KAM theory and Celestial Mechanics5. KAM theorem: sketch of the proof and applications

Alessandra Celletti

Department of Mathematics University of Roma "Tor Vergata"

Lisbon, 29-30 March 2016

- 1. Sketch of the Proof for CS systems
- 2. The a-posteriori approach
- 3. Break-down of quasi-periodic tori and attractors
- 4. KAM break-down criterion
- 5. Applications

1. Sketch of the Proof for CS systems

- 2. The a-posteriori approach
- 3. Break-down of quasi-periodic tori and attractors
- 4. KAM break-down criterion
- 5. Applications

- Step 1: approximate solution and linearization
- Step 2: determine the new approximation
- Step 3: solve the cohomological equation
- Step 4: convergence of the iterative step
- Step 5: local uniqueness

- Step 1: approximate solution and linearization
- Step 2: determine the new approximation
- Step 3: solve the cohomological equation
- Step 4: convergence of the iterative step
- Step 5: local uniqueness
- Analytic tools:
 - exponential decay of Fourier coefficients of analytic functions;

- Step 1: approximate solution and linearization Step 2: determine the new approximation Step 3: solve the cohomological equation
- Step 3: solve the cohomological equation
- Step 4: convergence of the iterative step
- Step 5: local uniqueness
- Analytic tools:
 - exponential decay of Fourier coefficients of analytic functions;
 - estimates to bound the derivatives in smaller domains;

- Step 1: approximate solution and linearizationStep 2: determine the new approximationStep 3: solve the cohomological equationStep 4: convergence of the iterative stepStep 5: local uniqueness
- Analytic tools:
 - exponential decay of Fourier coefficients of analytic functions;
 - estimates to bound the derivatives in smaller domains;
 - quantitative analysis of the cohomology equations;

- Step 1: approximate solution and linearizationStep 2: determine the new approximationStep 3: solve the cohomological equationStep 4: convergence of the iterative stepStep 5: local uniqueness
- Analytic tools:
 - exponential decay of Fourier coefficients of analytic functions;
 - estimates to bound the derivatives in smaller domains;
 - quantitative analysis of the cohomology equations;
 - abstract implicit function theorem.

Step 1: approximate solution and linearization

• Let (K, μ) be an approximate solution: $f_{\mu} \circ K(\theta) - K(\theta + \omega) = E(\theta)$.

• Using the Lagrangian property in coordinates, $DK^{T}(\theta) J \circ K(\theta) DK(\theta) = 0$, the tangent space is

Range
$$\left(\boldsymbol{D}\boldsymbol{K}(\theta) \right) \oplus$$
 Range $\left(\boldsymbol{V}(\theta) \right)$

with $V(\theta) = J^{-1} \circ K(\theta) DK(\theta) N(\theta)$ and $N(\theta) = (DK(\theta)^T DK(\theta))^{-1}$.

• Define:

 $M(\theta) = \left[\mathbf{D} \mathbf{K}(\theta) \mid \mathbf{V}(\theta) \right].$

Lemma

Up to a remainder R:

$$Df_{\mu} \circ K(heta) M(heta) = M(heta + \omega) egin{pmatrix} \mathrm{Id} & S(heta) \ 0 & \lambda \mathrm{Id} \end{pmatrix} + R(heta) \ .$$

Proof: Recall $M(\theta) = [DK(\theta) | V(\theta)].$ Part 1: taking the derivative of $f_{\mu} \circ K(\theta) = K(\theta + \omega) + E(\theta)$, one gets $Df_{\mu} \circ K(\theta) DK(\theta) = DK(\theta + \omega) + DE(\theta);$

Part 2: due to the remark on the tangent space, one has:

$$Df_{\mu} \circ K(\theta) V(\theta) = \mathbf{D}K(\theta + \omega) S(\theta) + \mathbf{V}(\theta + \omega) \lambda \mathrm{Id} + h.o.t.$$

with

$$S(\theta) \equiv N(\theta + \omega)^T DK(\theta + \omega)^T Df_{\mu} \circ K(\theta) J^{-1} \circ K(\theta) DK(\theta) N(\theta) - N(\theta + \omega)^T DK(\theta)^T J^{-1} \circ K(\theta) DK(\theta) N(\theta + \omega) \lambda \text{Id} .$$

 (\mathbf{R})

Step 2: determine a new approximation K' = K + MW, $\mu' = \mu + \sigma$ satisfying

$$f_{\mu'} \circ K'(\theta) - K'(\theta + \omega) = E'(\theta)$$
. $(APPR - INV)'$

• Expanding in Taylor series:

$$\begin{aligned} f_{\mu} \circ K(\theta) + Df_{\mu} \circ K(\theta) \ M(\theta) W(\theta) + D_{\mu}f_{\mu} \circ K(\theta)\sigma \\ -K(\theta + \omega) - M(\theta + \omega) \ W(\theta + \omega) + h.o.t. = E'(\theta) \end{aligned}$$

• Recalling that $f_{\mu} \circ K(\theta) - K(\theta + \omega) = E(\theta)$, the new error E' is quadratically smaller provided:

 $Df_{\mu} \circ K(\theta) M(\theta) W(\theta) - M(\theta + \omega) W(\theta + \omega) + D_{\mu}f_{\mu} \circ K(\theta)\sigma = -E(\theta) .$

• Combine the previous formula

 $Df_{\mu} \circ K(\theta) M(\theta) W(\theta) - M(\theta + \omega) W(\theta + \omega) + D_{\mu}f_{\mu} \circ K(\theta)\sigma = -E(\theta)$

and the Lemma:

$$Df_{\mu} \circ K(\theta) M(\theta) = M(\theta + \omega) \begin{pmatrix} Id & S(\theta) \\ 0 & \lambda Id \end{pmatrix} + R(\theta) , \qquad (R)$$

to get equations for $W = (W_1, W_2)$ and σ :

$$\underline{M(\theta+\omega)} \begin{pmatrix} \mathrm{Id} & S(\theta) \\ 0 & \lambda \mathrm{Id} \end{pmatrix} W(\theta) - \underline{M(\theta+\omega)} W(\theta+\omega) = -E(\theta) - D_{\mu}f_{\mu} \circ K(\theta)\sigma \ .$$

• Multiplying by $M(\theta + \omega)^{-1}$ and writing $W = (W_1, W_2)$, one gets

$$\begin{pmatrix} \mathrm{Id} & S(\theta) \\ 0 & \lambda \mathrm{Id} \end{pmatrix} \begin{pmatrix} W_1(\theta) \\ W_2(\theta) \end{pmatrix} - \begin{pmatrix} W_1(\theta + \omega) \\ W_2(\theta + \omega) \end{pmatrix} = \begin{pmatrix} -\tilde{E}_1(\theta) - \tilde{A}_1(\theta)\sigma \\ -\tilde{E}_2(\theta) - \tilde{A}_2(\theta)\sigma \end{pmatrix}$$

with $\tilde{E}_j(\theta) = -(M(\theta + \omega)^{-1}E)_j, \tilde{A}_j(\theta) = (M(\theta + \omega)^{-1}D_\mu f_\mu \circ K)_j.$

• In components:

$$W_{1}(\theta) - W_{1}(\theta + \omega) = -\widetilde{E}_{1}(\theta) - S(\theta)W_{2}(\theta) - \widetilde{A}_{1}(\theta)\sigma$$

$$\lambda W_{2}(\theta) - W_{2}(\theta + \omega) = -\widetilde{E}_{2}(\theta) - \widetilde{A}_{2}(\theta)\sigma$$
(B)

$$W_{1}(\theta) - W_{1}(\theta + \omega) = -\widetilde{E}_{1}(\theta) - S(\theta)W_{2}(\theta) - \widetilde{A}_{1}(\theta)\sigma \qquad (A)$$

$$\lambda W_{2}(\theta) - W_{2}(\theta + \omega) = -\widetilde{E}_{2}(\theta) - \widetilde{A}_{2}(\theta)\sigma \qquad (B)$$

$$W_{1}(\theta) - W_{1}(\theta + \omega) = -\widetilde{E}_{1}(\theta) - S(\theta)W_{2}(\theta) - \widetilde{A}_{1}(\theta)\sigma$$
(A)
$$\lambda W_{2}(\theta) - W_{2}(\theta + \omega) = -\widetilde{E}_{2}(\theta) - \widetilde{A}_{2}(\theta)\sigma$$
(B)

• (A) involves small (zero) divisors, since for k = 0 one has $1 - e^{ik \cdot \omega} = 0$ in

$$W_1(\theta) - W_1(\theta + \omega) = \sum_k \widehat{W}_{1,k} e^{ik\cdot\theta} (1 - e^{ik\cdot\omega}) .$$

$$W_{1}(\theta) - W_{1}(\theta + \omega) = -\widetilde{E}_{1}(\theta) - S(\theta)W_{2}(\theta) - \widetilde{A}_{1}(\theta)\sigma$$
(A)
$$\lambda W_{2}(\theta) - W_{2}(\theta + \omega) = -\widetilde{E}_{2}(\theta) - \widetilde{A}_{2}(\theta)\sigma$$
(B)

• (A) involves small (zero) divisors, since for k = 0 one has $1 - e^{ik \cdot \omega} = 0$ in

$$W_1(\theta) - W_1(\theta + \omega) = \sum_k \widehat{W}_{1,k} e^{ik\cdot\theta} (1 - e^{ik\cdot\omega}) .$$

• (B) always solvable for any $|\lambda| \neq 1$ by a contraction mapping argument.

$$W_{1}(\theta) - W_{1}(\theta + \omega) = -\widetilde{E}_{1}(\theta) - S(\theta)W_{2}(\theta) - \widetilde{A}_{1}(\theta)\sigma$$
(A)
$$\lambda W_{2}(\theta) - W_{2}(\theta + \omega) = -\widetilde{E}_{2}(\theta) - \widetilde{A}_{2}(\theta)\sigma$$
(B)

• (A) involves small (zero) divisors, since for k = 0 one has $1 - e^{ik \cdot \omega} = 0$ in

$$W_1(\theta) - W_1(\theta + \omega) = \sum_k \widehat{W}_{1,k} e^{ik\cdot\theta} (1 - e^{ik\cdot\omega}) .$$

- (*B*) always solvable for any $|\lambda| \neq 1$ by a contraction mapping argument.
- Non-degeneracy condition: computing the averages of eqs. (A), (B), determine $\langle W_2 \rangle$, σ by solving ($W_2 = \langle W_2 \rangle + B^0 + \sigma \tilde{B}^0$)

$$\begin{pmatrix} \langle S \rangle & \langle SB^0 \rangle + \langle \widetilde{A}_1 \rangle \\ (\lambda - 1) \mathrm{Id} & \langle \widetilde{A}_2 \rangle \end{pmatrix} \begin{pmatrix} \langle W_2 \rangle \\ \sigma \end{pmatrix} = \begin{pmatrix} -\langle S \widetilde{B}^0 \rangle - \langle \widetilde{E}_1 \rangle \\ -\langle \widetilde{E}_2 \rangle \end{pmatrix} .$$

Step 3: solve the cohomological equations

• Non-average parts of W_1 , W_2 : solve cohomological equations of the form

$$\lambda w(\theta) - w(\theta + \omega) = \eta(\theta)$$

with $\eta : \mathbb{T}^n \to \mathbb{C}$ known and with zero average.

Lemma

Let $|\lambda| \in [A, A^{-1}]$ for 0 < A < 1, $\omega \in \mathcal{D}(C, \tau)$, $\eta \in \mathcal{A}_{\rho}$, $\rho > 0$ or $\eta \in H^m$, $m \ge \tau$, and

$$\int_{\mathbb{T}^n}\eta(heta)\,d heta=0\;.$$

Then, there is one and only one solution w with zero average and

$$\begin{aligned} \|w\|_{\mathcal{A}_{\rho-\delta}} &\leq C_6 \ C \ \delta^{-\tau} \|\eta\|_{\mathcal{A}_{\rho}} \ , \\ \|w\|_{H^{m-\tau}} &\leq C_7 \ C \ \|\eta\|_{H^m} \ . \end{aligned}$$

Sketch of the proof. Expand η as

$$\eta(\theta) = \sum_{j \in \mathbb{Z}^n} \widehat{\eta}_j e^{2\pi i j \cdot \theta}$$

and using

$$\lambda w(\theta) - w(\theta + \omega) = \eta(\theta)$$

find

$$\widehat{w}_j = (\lambda - e^{2\pi i j \cdot \omega})^{-1} \widehat{\eta}_j;$$

when $\lambda = 1, j = 0$, it must be $\hat{\eta}_0 = 0$.

Estimate the multipliers using Cauchy bounds and use the Diophantine condition ([Rüssmann]).

Step 4: convergence of the iterative step

• The invariance equation is satisfied with an error quadratically smaller, i.e.

 $\|E'\|_{\mathcal{A}_{
ho-\delta}} \le C_8 \delta^{-2 au} \|E\|^2_{\mathcal{A}_{
ho}} \ , \qquad \|E'\|_{H^{m- au}} \le C_9 \|E\|^2_{H^m} \ .$

• The procedure can be iterated to get a sequence of approximate solutions, say $\{K_j, \mu_j\}$. Convergence: through an *abstract implicit function theorem*, alternating the iteration with carefully chosen smoothings operators defined in a scale of Banach spaces (analytic functions or Sobolev spaces).

Step 4: convergence of the iterative step

• The invariance equation is satisfied with an error quadratically smaller, i.e.

 $\|E'\|_{\mathcal{A}_{
ho-\delta}} \le C_8 \delta^{-2 au} \|E\|^2_{\mathcal{A}_{
ho}} \ , \qquad \|E'\|_{H^{m- au}} \le C_9 \|E\|^2_{H^m} \ .$

• The procedure can be iterated to get a sequence of approximate solutions, say $\{K_j, \mu_j\}$. Convergence: through an *abstract implicit function theorem*, alternating the iteration with carefully chosen smoothings operators defined in a scale of Banach spaces (analytic functions or Sobolev spaces).

Step 5: local uniqueness

• Under smallness conditions, if there exist two solutions $(K_a, \mu_a), (K_b, \mu_b)$, then there exists $\psi \in \mathbb{R}^n$ such that

$$K_b(\theta) = K_a(\theta + \psi)$$
 and $\mu_a = \mu_b$.

1. Sketch of the Proof for CS systems

2. The a-posteriori approach

- 3. Break-down of quasi-periodic tori and attractors
- 4. KAM break-down criterion
- 5. Applications

• Following [LGJV2005], for conformally symplectic systems, by adjusting the parameters under a suitable non-degeneracy condition *near an approximately invariant torus, there is a true invariant torus*, [CCL].

• A KAM theory with adjustment of parameters was developed in [Moser1967], but with a parameter count different than in [CCL], since [Moser1967] is very general and does not take into account the geometric structure.

• Following [LGJV2005], for conformally symplectic systems, by adjusting the parameters under a suitable non-degeneracy condition *near an approximately invariant torus, there is a true invariant torus*, [CCL].

• A KAM theory with adjustment of parameters was developed in [Moser1967], but with a parameter count different than in [CCL], since [Moser1967] is very general and does not take into account the geometric structure.

Advantages of the a-posteriori approach:

- ▶ it can be developed in any coordinate frame, not necessarily in action-angle variables;
- ► the system is **not** assumed to be nearly integrable;
- ► instead of constructing a sequence of coordinate transformations on shrinking domains as in the perturbation approach, we shall compute suitable corrections to the embedding and the drift.

Consequences of the a-posteriori approach for conformally symplectic systems (with R. Calleja, R. de la Llave):

 the method provides an efficient algorithm to determine the breakdown threshold, very suitable for computer implementations;
 very refined quantitative estimates;

- ► local behavior near quasi-periodic solutions;
- ▶ partial justification of Greene's criterion (also with C. Falcolini);
- ► a bootstrap of regularity, which allows to state that all smooth enough tori are analytic, whenever the map is analytic;
- ► analyticity domains of the quasi-periodic attractors in the symplectic limit;
- ▶ whiskered tori for conformally symplectic systems.

- 1. Sketch of the Proof for CS systems
- 2. The a-posteriori approach
- 3. Break-down of quasi-periodic tori and attractors
- 4. KAM break-down criterion
- 5. Applications

• We can compute a rigorous lower bound of the break–down threshold of invariant tori by means of KAM theory.

• Which is the real break-down value?

• In physical problems one can compare KAM result with a measure of the parameter. For example in the 3-body problem, $\varepsilon = \frac{m_{Jupiter}}{m_{Sum}} \simeq 10^{-3}$.

• In model problems one needs to apply numerical techniques: KAM break–down criterion, Greene's technique, frequency analysis, etc.

- 1. Sketch of the Proof for CS systems
- 2. The a-posteriori approach
- 3. Break-down of quasi-periodic tori and attractors
- 4. KAM break-down criterion
- 5. Applications

KAM break-down criterion [Calleja, Celletti 2010]

• Solve the invariance equation for (K, μ) :

$$f_{\mu} \circ K(\theta) = K(\theta + \omega)$$
.

• Numerically efficient criterion: close to breakdown, one has a blow up of the Sobolev norms of a trigonometric approximation of the embedding:

$$K^{(L)}(\theta) = \sum_{|\ell| \le L} \widehat{K}_{\ell} e^{i\ell\theta} .$$

• A regular behavior of $||K^{(L)}||_m$ as ε increases (for λ fixed) provides evidence of the existence of the invariant attractor. Table: ε_{crit} for $\omega_r = 2\pi \frac{\sqrt{5}-1}{2}$.

Conservative case	Dissipative case	
ε_{crit}	λ	ε_{crit}
0.9716	0.9	0.9721
	0.5	0.9792

Greene's method, periodic orbits and Arnold's tongues

• Greene's method: breakdown of $\mathcal{C}(\omega)$ related to the stability of $\mathcal{P}(\frac{p_j}{q_j}) \to \mathcal{C}(\omega)$, but in the dissipative case: drift in an interval - *Arnold tongue* - admitting a periodic orbit.

Figure: Left: Arnold's tongues providing μ vs. ε for 3 periodic orbits. Right: For $\lambda = 0.9$ and $\varepsilon = 0.5$ invariant attractor with frequency ω_r and approximating periodic orbits: 5/8 (*), 8/13 (+), 34/55 (×).

p_j/q_j	$\varepsilon_{p_j,q_j}^{\omega_r}(cons)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$
	$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
1/2	0.9999	0.999	0.999
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

p_j/q_j	$\varepsilon_{p_j,q_j}^{\omega_r}(cons)$ $\varepsilon_{Sob} = [0.9716]$	$arepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.9) \ arepsilon_{Sob}=[0.972]$	$arepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5) \ arepsilon_{Sob}=[0.979]$
1/2	0.9999	0.999	0.999
2/3	0.9582	0.999	0.999
			I

p_j/q_j	$\varepsilon_{p_j,q_j}^{\omega_r}(cons)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$
	$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
1/2	0.9999	0.999	0.999
2/3	0.9582	0.999	0.999
3/5	0.9778	0.999	0.999

p_j/q_j	$\varepsilon_{p_j,q_j}^{\omega_r}(cons)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$
	$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
1/2	0.9999	0.999	0.999
2/3	0.9582	0.999	0.999
3/5	0.9778	0.999	0.999
5/8	0.9690	0.993	0.992

$\varepsilon_{p_j,q_j}^{\omega_r}(cons)$	$\varepsilon_{p_i,q_i}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$
$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
0.9999	0.999	0.999
0.9582	0.999	0.999
0.9778	0.999	0.999
0.9690	0.993	0.992
0.9726	0.981	0.987
	$arepsilon_{p_{j},q_{j}}^{\omega_{r}}(cons)$ $arepsilon_{sob} = [0.9716]$ 0.9999 0.9582 0.9778 0.9690 0.9726	$ \begin{array}{ll} \varepsilon^{\omega_r}_{p_j,q_j}(cons) & \varepsilon^{\omega_r}_{p_j,q_j}(\lambda=0.9) \\ \varepsilon_{Sob} = [0.9716] & \varepsilon_{Sob} = [0.972] \\ \hline 0.9999 & 0.999 \\ \hline 0.9582 & 0.999 \\ \hline 0.9778 & 0.999 \\ \hline 0.9690 & 0.993 \\ \hline 0.9726 & 0.981 \\ \end{array} $

p_j/q_j	$\varepsilon_{p_i,q_i}^{\omega_r}(cons)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$
	$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
1/2	0.9999	0.999	0.999
2/3	0.9582	0.999	0.999
3/5	0.9778	0.999	0.999
5/8	0.9690	0.993	0.992
8/13	0.9726	0.981	0.987
13/21	0.9711	0.980	0.983

p_j/q_j	$\varepsilon_{p_i,q_i}^{\omega_r}(cons)$	$\varepsilon_{p_i,q_i}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_i,q_i}^{\omega_r}(\lambda=0.5)$
	$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
1/2	0.9999	0.999	0.999
2/3	0.9582	0.999	0.999
3/5	0.9778	0.999	0.999
5/8	0.9690	0.993	0.992
8/13	0.9726	0.981	0.987
13/21	0.9711	0.980	0.983
21/34	0.9717	0.976	0.980

p_j/q_j	$\varepsilon_{p_i,q_i}^{\omega_r}(cons)$	$\varepsilon_{p_i,q_i}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$
	$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
1/2	0.9999	0.999	0.999
2/3	0.9582	0.999	0.999
3/5	0.9778	0.999	0.999
5/8	0.9690	0.993	0.992
8/13	0.9726	0.981	0.987
13/21	0.9711	0.980	0.983
21/34	0.9717	0.976	0.980
34/55	0.9715	0.975	0.979

p_j/q_j	$\varepsilon_{p_i,q_i}^{\omega_r}(cons)$	$\varepsilon_{p_i,q_i}^{\omega_r}(\lambda=0.9)$	$\varepsilon_{p_j,q_j}^{\omega_r}(\lambda=0.5)$
	$\varepsilon_{Sob} = [0.9716]$	$\varepsilon_{Sob} = [0.972]$	$\varepsilon_{Sob} = [0.979]$
1/2	0.9999	0.999	0.999
2/3	0.9582	0.999	0.999
3/5	0.9778	0.999	0.999
5/8	0.9690	0.993	0.992
8/13	0.9726	0.981	0.987
13/21	0.9711	0.980	0.983
21/34	0.9717	0.976	0.980
34/55	0.9715	0.975	0.979
55/89	0.9716	0.974	0.979

- 1. Sketch of the Proof for CS systems
- 2. The a-posteriori approach
- 3. Break-down of quasi-periodic tori and attractors
- 4. KAM break-down criterion
- 5. Applications

Applications

- (Standard map)
- Rotational dynamics: [spin-orbit problem]
- Orbital dynamics: (three–body problem)

KAM stability through confinement

• Confinement in 2–dimensional systems: dim(phase space)=4, dim(constant energy level)=3, dim(invariant tori)=2 \rightarrow confinement in phase space for ∞ times between bounding invariant tori

• Confinement no more valid for n > 2: the motion can diffuse through invariant tori, reaching arbitrarily far regions (Arnold's diffusion).

Conservative standard map

Results of the '90s

• [A.C., L. Chierchia] Let $\omega = 2\pi \frac{\sqrt{5}-1}{2}$; $|\varepsilon| \le 0.838$ (86% of Greene's value) there exists an invariant curve with frequency ω .

• [R. de la Llave, D. Rana] Using accurate strategies and efficient computer–assisted algorithms, the result was improved to 93% of Greene's value.

• Very recent results [J.-L. Figueras, A. Haro, A. Luque] in

http://arxiv.org/abs/1601.00084 reaching 99.9%!!!

Dissipative standard map

• Using $K_2(\theta) = \theta + u(\theta)$, the invariance equation is

$$D_1 D_\lambda u(\theta) - \varepsilon \sin(\theta + u(\theta)) + \omega(1 - \lambda) - \mu = 0$$
(1)

with $D_{\lambda}u(\theta) = u(\theta + \frac{\omega}{2}) - \lambda u(\theta - \frac{\omega}{2}).$

Proposition [dissipative standard map, R. Calleja, A.C., R. de la Llave (2016)]

Let $\omega = 2\pi \frac{\sqrt{5}-1}{2}$ and $\lambda = 0.9$; then, for $\varepsilon \leq \varepsilon_{KAM}$, there exists a unique solution $u = u(\theta)$ of (1), provided that $\mu = \omega(1 - \lambda) + \langle u_{\theta} D_1 D_{\lambda} u \rangle$.

• The drift μ must be suitably tuned and cannot be chosen independently from ω .

Dissipative standard map

• Using $K_2(\theta) = \theta + u(\theta)$, the invariance equation is

$$D_1 D_\lambda u(\theta) - \varepsilon \sin(\theta + u(\theta)) + \omega(1 - \lambda) - \mu = 0$$
(1)

with $D_{\lambda}u(\theta) = u(\theta + \frac{\omega}{2}) - \lambda u(\theta - \frac{\omega}{2}).$

Proposition [dissipative standard map, R. Calleja, A.C., R. de la Llave (2016)]

Let $\omega = 2\pi \frac{\sqrt{5}-1}{2}$ and $\lambda = 0.9$; then, for $\varepsilon \leq \varepsilon_{KAM}$, there exists a unique solution $u = u(\theta)$ of (1), provided that $\mu = \omega(1 - \lambda) + \langle u_{\theta} D_1 D_{\lambda} u \rangle$.

• The drift μ must be suitably tuned and cannot be chosen independently from ω .

Dissipative standard map

• Using $K_2(\theta) = \theta + u(\theta)$, the invariance equation is

$$D_1 D_\lambda u(\theta) - \varepsilon \sin(\theta + u(\theta)) + \omega(1 - \lambda) - \mu = 0$$
(1)

with $D_{\lambda}u(\theta) = u(\theta + \frac{\omega}{2}) - \lambda u(\theta - \frac{\omega}{2}).$

Proposition [dissipative standard map, R. Calleja, A.C., R. de la Llave (2016)]

Let $\omega = 2\pi \frac{\sqrt{5}-1}{2}$ and $\lambda = 0.9$; then, for $\varepsilon \leq \varepsilon_{KAM}$, there exists a unique solution $u = u(\theta)$ of (1), provided that $\mu = \omega(1 - \lambda) + \langle u_{\theta} D_1 D_{\lambda} u \rangle$.

• The drift μ must be suitably tuned and cannot be chosen independently from ω .

• Preliminary result: conf. symplectic version, careful estimates, continuation method using the Fourier expansion of the initial approximate solution ⇒

 $\varepsilon_{KAM} = (99\% \text{ of the critical breakdown threshold })$

Rotational dynamics

The **Moon** and all evolved satellites, always point the same face to the host planet: 1:1 resonance, i.e. 1 rotation = 1 revolution (Phobos, Deimos - Mars, Io, Europa, Ganimede, Callisto - Jupiter, Titan, Rhea, Enceladus, etc.). Only exception: **Mercury** in a 3:2 spin–orbit resonance (3 rotations = 2 revolutions).

• Important dissipative effect: **tidal torque**, due to the non-rigidity of planets and satellites.

Conservative spin-orbit problem

• Spin–orbit problem: triaxial satellite S (with A < B < C) moving on a Keplerian orbit around a central planet \mathcal{P} , assuming that the spin–axis is perpendicular to the orbit plane and coincides with the shortest physical axis.

Conservative spin-orbit problem

Spin–orbit problem: triaxial satellite S (with A < B < C) moving on a Keplerian orbit around a central planet P, assuming that the spin–axis is perpendicular to the orbit plane and coincides with the shortest physical axis.
Equation of motion:

$$\ddot{x} + \varepsilon (\frac{a}{r})^3 \sin(2x - 2f) = 0$$
, $\varepsilon = \frac{3}{2} \frac{B - A}{C}$.

• The (Diophantine) frequencies of the bounding tori are for example:

$$\omega_{-} \equiv 1 - \frac{1}{2 + \frac{\sqrt{5}-1}{2}} , \qquad \omega_{+} \equiv 1 + \frac{1}{2 + \frac{\sqrt{5}-1}{2}} .$$

Proposition [spin-orbit model, A.C. (1990)]

Consider the spin–orbit Hamiltonian defined in $U \times \mathbb{T}^2$ with $U \subset \mathbb{R}$ open set. Then, for the true eccentricity of the Moon e = 0.0549, there exist invariant tori, bounding the motion of the Moon, for any $\varepsilon \leq \varepsilon_{Moon} = 3.45 \cdot 10^{-4}$.

A. Celletti (Univ. Roma Tor Vergata)

KAM theory and Celestial Mechanics

• Possible forthcoming estimates: spin–orbit equation with tidal torque given by

$$\ddot{x} + \varepsilon \left(\frac{a}{r}\right)^3 \sin(2x - 2f) = -\lambda(\dot{x} - \mu) , \qquad (2)$$

where λ , μ depend on the orbital (e) and physical properties of the satellite.

• Possible forthcoming estimates: spin–orbit equation with tidal torque given by

$$\ddot{x} + \varepsilon \left(\frac{a}{r}\right)^3 \sin(2x - 2f) = -\lambda(\dot{x} - \mu) , \qquad (2)$$

where λ , μ depend on the orbital (e) and physical properties of the satellite.

Proposition [A.C., L. Chierchia (2009)]

Let $\lambda_0 \in \mathbb{R}_+$, ω Diophantine. There exists $0 < \varepsilon_0 < 1$, such that for any $\varepsilon \in [0, \varepsilon_0]$ and any $\lambda \in [-\lambda_0, \lambda_0]$ there exists a unique function $u = u(\theta, t)$ with $\langle u \rangle = 0$, such that

$$x(t) = \omega t + u(\omega t, t)$$

solves the equation of motion with $\mu = \omega (1 + \langle u_{\theta}^2 \rangle)$.

Conservative three–body problem

- Consider the motion of a small body (with negligible mass) under the gravitational influence of two primaries, moving on Keplerian orbits about their common barycenter (*restricted* problem).
- Assume that the orbits of the primaries are circular and that all bodies move on the same plane: *planar, circular, restricted three–body problem* (PCR3BP).

Conservative three–body problem

• Consider the motion of a small body (with negligible mass) under the gravitational influence of two primaries, moving on Keplerian orbits about their common barycenter (*restricted* problem).

Assume that the orbits of the primaries are circular and that all bodies move on the same plane: *planar*, *circular*, *restricted three–body problem* (PCR3BP).
Adopting suitable normalized units and action–angle Delaunay variables (L, G) ∈ ℝ², (ℓ, g) ∈ T², we obtain a 2 d.o.f. Hamiltonian function:

$$\mathcal{H}(L,G,\ell,g) = -\frac{1}{2L^2} - G + \varepsilon R(L,G,\ell,g) \; .$$

• ε primaries' mass ratio ($\varepsilon = 0$ Keplerian motion). Actions: $L = \sqrt{a}$, $G = L\sqrt{1 - e^2}$.

• Degenerate Hamiltonian, but Arnold's isoenergetic non-degenerate (persistence of invariant tori on a fixed energy surface), i.e. setting $h(L, G) = -\frac{1}{2L^2} - G$:

$$\det \begin{pmatrix} h''(L,G) & h'(L,G) \\ h'(L,G)^T & 0 \end{pmatrix} = \det \begin{pmatrix} -\frac{3}{L^4} & 0 & \frac{1}{L^3} \\ 0 & 0 & -1 \\ \frac{1}{L^3} & -1 & 0 \end{pmatrix} = \frac{3}{L^4} \neq 0 \quad \text{for all } L \neq 0.$$

• Dimension phase space = 4, fix the energy: dim = 3; dimension invariant tori = 2.

Result: The stability of the small body can be obtained by proving the existence of invariant surfaces which confine the motion of the asteroid on a preassigned energy level.

Sample: Sun, Jupiter, asteroid 12 Victoria with

$$a_{\rm V} \simeq 0.449$$
, $e_{\rm V} \simeq 0.220$, $v_{\rm V} \simeq \frac{8.363 - 1.305}{360} = 1.961 \cdot 10^{-2}$.

• Size of the perturbing parameter: $\varepsilon_J = 0.954 \cdot 10^{-3}$.

• Approximations: disregard $e_J = 4.82 \cdot 10^{-2}$ (worst physical approximation), inclinations, gravitational effects of other bodies (Mars and Saturn), dissipative phenomena (tides, solar winds, Yarkovsky effect,...)

32/33

Concrete example: Sun, Jupiter, asteroid 12 Victoria with a = 0.449 (in Jupiter–Sun unit distance) and e = 0.22, so that L_V ≃ 0.670, G_V ≃ 0.654.
Select the energy level as E^{*}_V = -¹/_{2L²} − G_V + ε_J⟨R(L_V, G_V, ℓ, g)⟩ ≃ −1.769,

where $\varepsilon_J \simeq 10^{-3}$ is the observed Jupiter–Sun mass–ratio. On such (3–dim) energy level prove the existence of two (2–dim) trapping tori with frequencies ω_{\pm} .

• Concrete example: Sun, Jupiter, asteroid 12 Victoria with a = 0.449 (in Jupiter–Sun unit distance) and e = 0.22, so that $L_V \simeq 0.670$, $G_V \simeq 0.654$. • Select the energy level as $E_V^* = -\frac{1}{2L_V^2} - G_V + \varepsilon_J \langle R(L_V, G_V, \ell, g) \rangle \simeq -1.769$, where $\varepsilon_J \simeq 10^{-3}$ is the observed Jupiter–Sun mass–ratio. On such (3–dim) energy level prove the existence of two (2–dim) trapping tori with frequencies ω_{\pm} .

Proposition [three-body problem, A.C., L. Chierchia (2007)]

Let $E = E_V^*$. Then, for $|\varepsilon| \le 10^{-3}$ the unperturbed tori with trapping frequencies ω_{\pm} can be analytically continued into KAM tori for the perturbed system on the energy level $\mathcal{H}^{-1}(E_V^*)$ keeping fixed the ratio of the frequencies.

• Due to the link between a, e and L, G, this result guarantees that a, e remain close to the unperturbed values within an interval of size of order ε .

Corollary: The values of the perturbed integrals L(t) and G(t) stay close forever to their initial values L_V and G_V and the actual motion (in the mathematical model) is nearly elliptical with osculating orbital values close to the observed ones.