# KAM theory and Celestial Mechanics <br> 5. KAM theorem: sketch of the proof and applications 

Alessandra Celletti

Department of Mathematics
University of Roma "Tor Vergata"

Lisbon, 29-30 March 2016


## Outline

## 1. Sketch of the Proof for CS systems

## 2. The a-posteriori approach

## 3. Break-down of quasi-periodic tori and attractors

## 4. KAM break-down criterion

## 5. Applications

## Outline

1. Sketch of the Proof for CS systems

## 2. The a-posteriori approach

## 3. Break-down of quasi-periodic tori and attractors

## 4. KAM break-down criterion

## 5. Applications

## Sketch of the Proof for CS systems [Calleja, Celletti, de la Llave 2013]

Step 1: approximate solution and linearization
Step 2: determine the new approximation
Step 3: solve the cohomological equation
Step 4: convergence of the iterative step
Step 5: local uniqueness

## Sketch of the Proof for CS systems [Calleja, Celletti, de la Llave 2013]

Step 1: approximate solution and linearization
Step 2: determine the new approximation
Step 3: solve the cohomological equation
Step 4: convergence of the iterative step
Step 5: local uniqueness

- Analytic tools:
- exponential decay of Fourier coefficients of analytic functions;

NOTATION: From now on drop the underline to denote vectors.

## Sketch of the Proof for CS systems [Calleja, Celletti, de la Llave 2013]

Step 1: approximate solution and linearization
Step 2: determine the new approximation
Step 3: solve the cohomological equation
Step 4: convergence of the iterative step
Step 5: local uniqueness

- Analytic tools:
- exponential decay of Fourier coefficients of analytic functions;
- estimates to bound the derivatives in smaller domains;

NOTATION: From now on drop the underline to denote vectors.

## Sketch of the Proof for CS systems [Calleja, Celletti, de la Llave 2013]

Step 1: approximate solution and linearization
Step 2: determine the new approximation
Step 3: solve the cohomological equation
Step 4: convergence of the iterative step
Step 5: local uniqueness

- Analytic tools:
- exponential decay of Fourier coefficients of analytic functions;
- estimates to bound the derivatives in smaller domains;
- quantitative analysis of the cohomology equations;

NOTATION: From now on drop the underline to denote vectors.

## Sketch of the Proof for CS systems [Calleja, Celletti, de la Llave 2013]

Step 1: approximate solution and linearization
Step 2: determine the new approximation
Step 3: solve the cohomological equation
Step 4: convergence of the iterative step
Step 5: local uniqueness

- Analytic tools:
- exponential decay of Fourier coefficients of analytic functions;
- estimates to bound the derivatives in smaller domains;
- quantitative analysis of the cohomology equations;
- abstract implicit function theorem.

NOTATION: From now on drop the underline to denote vectors.

Step 1: approximate solution and linearization

- Let $(K, \mu)$ be an approximate solution: $f_{\mu} \circ K(\theta)-K(\theta+\omega)=E(\theta)$.
- Using the Lagrangian property in coordinates, $D K^{T}(\theta) J \circ K(\theta) D K(\theta)=0$, the tangent space is

$$
\text { Range }(D K(\theta)) \oplus \text { Range }(V(\theta))
$$

with $V(\theta)=J^{-1} \circ K(\theta) D K(\theta) N(\theta)$ and $N(\theta)=\left(D K(\theta)^{T} D K(\theta)\right)^{-1}$.

- Define:

$$
M(\theta)=[D K(\theta) \mid V(\theta)]
$$

## Lemma

Up to a remainder $R$ :

$$
D f_{\mu} \circ K(\theta) M(\theta)=M(\theta+\omega)\left(\begin{array}{cc}
\operatorname{Id} & S(\theta)  \tag{R}\\
0 & \lambda \operatorname{Id}
\end{array}\right)+R(\theta) .
$$

Proof: Recall $M(\theta)=[D K(\theta) \mid V(\theta)]$.
Part 1: taking the derivative of $f_{\mu} \circ K(\theta)=K(\theta+\omega)+E(\theta)$, one gets $D f_{\mu} \circ K(\theta) D K(\theta)=D K(\theta+\omega)+D E(\theta)$;
Part 2: due to the remark on the tangent space, one has:

$$
D f_{\mu} \circ K(\theta) V(\theta)=D K(\theta+\omega) S(\theta)+V(\theta+\omega) \lambda \mathrm{Id}+\text { h.o.t. }
$$

with

$$
\begin{aligned}
S(\theta) & \equiv N(\theta+\omega)^{T} D K(\theta+\omega)^{T} D f_{\mu} \circ K(\theta) J^{-1} \circ K(\theta) D K(\theta) N(\theta) \\
& -N(\theta+\omega)^{T} D K(\theta)^{T} J^{-1} \circ K(\theta) D K(\theta) N(\theta+\omega) \lambda \operatorname{Id} .
\end{aligned}
$$

Step 2: determine a new approximation $K^{\prime}=K+M W, \mu^{\prime}=\mu+\sigma$ satisfying

$$
f_{\mu^{\prime}} \circ K^{\prime}(\theta)-K^{\prime}(\theta+\omega)=E^{\prime}(\theta) . \quad(A P P R-I N V)^{\prime}
$$

- Expanding in Taylor series:

$$
\begin{aligned}
& f_{\mu} \circ K(\theta)+D f_{\mu} \circ K(\theta) M(\theta) W(\theta)+D_{\mu} f_{\mu} \circ K(\theta) \sigma \\
& \quad-K(\theta+\omega)-M(\theta+\omega) W(\theta+\omega)+\text { h.o.t. }=E^{\prime}(\theta)
\end{aligned}
$$

- Recalling that $f_{\mu} \circ K(\theta)-K(\theta+\omega)=E(\theta)$, the new error $E^{\prime}$ is quadratically smaller provided:

$$
D f_{\mu} \circ K(\theta) M(\theta) W(\theta)-M(\theta+\omega) W(\theta+\omega)+D_{\mu} f_{\mu} \circ K(\theta) \sigma=-E(\theta) .
$$

- Combine the previous formula

$$
D f_{\mu} \circ K(\theta) M(\theta) W(\theta)-M(\theta+\omega) W(\theta+\omega)+D_{\mu} f_{\mu} \circ K(\theta) \sigma=-E(\theta)
$$

and the Lemma:

$$
D f_{\mu} \circ K(\theta) M(\theta)=M(\theta+\omega)\left(\begin{array}{cc}
\operatorname{Id} & S(\theta)  \tag{R}\\
0 & \lambda \operatorname{Id}
\end{array}\right)+R(\theta),
$$

to get equations for $W=\left(W_{1}, W_{2}\right)$ and $\sigma$ :
$\underline{M(\theta+\omega)}\left(\begin{array}{cc}\text { Id } & S(\theta) \\ 0 & \lambda \mathrm{Id}\end{array}\right) W(\theta)-\underline{M(\theta+\omega)} W(\theta+\omega)=-E(\theta)-D_{\mu} f_{\mu} \circ K(\theta) \sigma$.

- Multiplying by $M(\theta+\omega)^{-1}$ and writing $W=\left(W_{1}, W_{2}\right)$, one gets

$$
\left(\begin{array}{cc}
\operatorname{Id} & S(\theta) \\
0 & \lambda \mathrm{Id}
\end{array}\right)\binom{W_{1}(\theta)}{W_{2}(\theta)}-\binom{W_{1}(\theta+\omega)}{W_{2}(\theta+\omega)}=\binom{-\tilde{E}_{1}(\theta)-\tilde{A}_{1}(\theta) \sigma}{-\tilde{E}_{2}(\theta)-\tilde{A}_{2}(\theta) \sigma} .
$$

$$
\text { with } \tilde{E}_{j}(\theta)=-\left(M(\theta+\omega)^{-1} E\right)_{j}, \tilde{A}_{j}(\theta)=\left(M(\theta+\omega)^{-1} D_{\mu} f_{\mu} \circ K\right)_{j}
$$

- In components:

$$
\begin{align*}
W_{1}(\theta)-W_{1}(\theta+\omega) & =-\widetilde{E}_{1}(\theta)-S(\theta) W_{2}(\theta)-\widetilde{A}_{1}(\theta) \sigma  \tag{A}\\
\lambda W_{2}(\theta)-W_{2}(\theta+\omega) & =-\widetilde{E}_{2}(\theta)-\widetilde{A}_{2}(\theta) \sigma \tag{B}
\end{align*}
$$

- Cohomological eq.s with constant coefficients for $\left(W_{1}, W_{2}\right), \sigma$ for known $S$, $\widetilde{E} \equiv\left(\widetilde{E}_{1}, \widetilde{E}_{2}\right), \widetilde{A} \equiv\left[\widetilde{A}_{1} \mid \widetilde{A}_{2}\right]:$

$$
\begin{align*}
W_{1}(\theta)-W_{1}(\theta+\omega) & =-\widetilde{E}_{1}(\theta)-S(\theta) W_{2}(\theta)-\widetilde{A}_{1}(\theta) \sigma  \tag{A}\\
\lambda W_{2}(\theta)-W_{2}(\theta+\omega) & =-\widetilde{E}_{2}(\theta)-\widetilde{A}_{2}(\theta) \sigma \tag{B}
\end{align*}
$$

- Cohomological eq.s with constant coefficients for $\left(W_{1}, W_{2}\right), \sigma$ for known $S$, $\widetilde{E} \equiv\left(\widetilde{E}_{1}, \widetilde{E}_{2}\right), \widetilde{A} \equiv\left[\widetilde{A}_{1} \mid \widetilde{A}_{2}\right]:$

$$
\begin{align*}
W_{1}(\theta)-W_{1}(\theta+\omega) & =-\widetilde{E}_{1}(\theta)-S(\theta) W_{2}(\theta)-\widetilde{A}_{1}(\theta) \sigma  \tag{A}\\
\lambda W_{2}(\theta)-W_{2}(\theta+\omega) & =-\widetilde{E}_{2}(\theta)-\widetilde{A}_{2}(\theta) \sigma \tag{B}
\end{align*}
$$

- (A) involves small (zero) divisors, since for $k=0$ one has $1-e^{i k \cdot \omega}=0$ in

$$
W_{1}(\theta)-W_{1}(\theta+\omega)=\sum_{k} \widehat{W}_{1, k} e^{i k \cdot \theta}\left(1-e^{i k \cdot \omega}\right)
$$

- Cohomological eq.s with constant coefficients for $\left(W_{1}, W_{2}\right), \sigma$ for known $S$, $\widetilde{E} \equiv\left(\widetilde{E}_{1}, \widetilde{E}_{2}\right), \widetilde{A} \equiv\left[\widetilde{A}_{1} \mid \widetilde{A}_{2}\right]:$

$$
\begin{align*}
W_{1}(\theta)-W_{1}(\theta+\omega) & =-\widetilde{E}_{1}(\theta)-S(\theta) W_{2}(\theta)-\widetilde{A}_{1}(\theta) \sigma  \tag{A}\\
\lambda W_{2}(\theta)-W_{2}(\theta+\omega) & =-\widetilde{E}_{2}(\theta)-\widetilde{A}_{2}(\theta) \sigma \tag{B}
\end{align*}
$$

- (A) involves small (zero) divisors, since for $k=0$ one has $1-e^{i k \cdot \omega}=0$ in

$$
W_{1}(\theta)-W_{1}(\theta+\omega)=\sum_{k} \widehat{W}_{1, k} e^{i k \cdot \theta}\left(1-e^{i k \cdot \omega}\right)
$$

- (B) always solvable for any $|\lambda| \neq 1$ by a contraction mapping argument.
- Cohomological eq.s with constant coefficients for $\left(W_{1}, W_{2}\right), \sigma$ for known $S$, $\widetilde{E} \equiv\left(\widetilde{E}_{1}, \widetilde{E}_{2}\right), \widetilde{A} \equiv\left[\widetilde{A}_{1} \mid \widetilde{A}_{2}\right]:$

$$
\begin{align*}
W_{1}(\theta)-W_{1}(\theta+\omega) & =-\widetilde{E}_{1}(\theta)-S(\theta) W_{2}(\theta)-\widetilde{A}_{1}(\theta) \sigma  \tag{A}\\
\lambda W_{2}(\theta)-W_{2}(\theta+\omega) & =-\widetilde{E}_{2}(\theta)-\widetilde{A}_{2}(\theta) \sigma \tag{B}
\end{align*}
$$

- (A) involves small (zero) divisors, since for $k=0$ one has $1-e^{i k \cdot \omega}=0$ in

$$
W_{1}(\theta)-W_{1}(\theta+\omega)=\sum_{k} \widehat{W}_{1, k} e^{i k \cdot \theta}\left(1-e^{i k \cdot \omega}\right) .
$$

- (B) always solvable for any $|\lambda| \neq 1$ by a contraction mapping argument.
- Non-degeneracy condition: computing the averages of eqs. $(A),(B)$, determine $\left\langle W_{2}\right\rangle, \sigma$ by solving $\left(W_{2}=\left\langle W_{2}\right\rangle+B^{0}+\sigma \tilde{B}^{0}\right)$

$$
\left(\begin{array}{cc}
\langle S\rangle & \left\langle S B^{0}\right\rangle+\left\langle\widetilde{A}_{1}\right\rangle \\
(\lambda-1) \mathrm{Id} & \left\langle\widetilde{A}_{2}\right\rangle
\end{array}\right)\binom{\left\langle W_{2}\right\rangle}{\sigma}=\binom{-\left\langle S \tilde{B}^{0}\right\rangle-\left\langle\widetilde{E}_{1}\right\rangle}{-\left\langle\widetilde{E}_{2}\right\rangle} .
$$

Step 3: solve the cohomological equations

- Non-average parts of $W_{1}, W_{2}$ : solve cohomological equations of the form

$$
\lambda w(\theta)-w(\theta+\omega)=\eta(\theta)
$$

with $\eta: \mathbb{T}^{n} \rightarrow \mathbb{C}$ known and with zero average.

## Lemma

Let $|\lambda| \in\left[A, A^{-1}\right]$ for $0<A<1, \omega \in \mathcal{D}(C, \tau), \eta \in \mathcal{A}_{\rho}, \rho>0$ or $\eta \in H^{m}$, $m \geq \tau$, and

$$
\int_{\mathbb{T}^{n}} \eta(\theta) d \theta=0 .
$$

Then, there is one and only one solution $w$ with zero average and

$$
\begin{aligned}
\|w\|_{\mathcal{A}_{\rho-\delta}} & \leq C_{6} C \delta^{-\tau}\|\eta\|_{\mathcal{A}_{\rho}} \\
\|w\|_{H^{m-\tau}} & \leq C_{7} C\|\eta\|_{H^{m}}
\end{aligned}
$$

## Sketch of the proof. Expand $\eta$ as

$$
\eta(\theta)=\sum_{j \in \mathbb{Z}^{n}} \widehat{\eta}_{j} e^{2 \pi i j \cdot \theta}
$$

and using

$$
\lambda w(\theta)-w(\theta+\omega)=\eta(\theta)
$$

find

$$
\widehat{w}_{j}=\left(\lambda-e^{2 \pi i j \cdot \omega}\right)^{-1} \widehat{\eta}_{j} ;
$$

when $\lambda=1, j=0$, it must be $\widehat{\eta}_{0}=0$.
Estimate the multipliers using Cauchy bounds and use the Diophantine condition ([Rüssmann]).

Step 4: convergence of the iterative step

- The invariance equation is satisfied with an error quadratically smaller, i.e.

$$
\left\|E^{\prime}\right\|_{\mathcal{A}_{\rho-\delta}} \leq C_{8} \delta^{-2 \tau}\|E\|_{\mathcal{A}_{\rho}}^{2}, \quad\left\|E^{\prime}\right\|_{H^{m-\tau}} \leq C_{9}\|E\|_{H^{m}}^{2}
$$

- The procedure can be iterated to get a sequence of approximate solutions, say $\left\{K_{j}, \mu_{j}\right\}$. Convergence: through an abstract implicit function theorem, alternating the iteration with carefully chosen smoothings operators defined in a scale of Banach spaces (analytic functions or Sobolev spaces).

Step 4: convergence of the iterative step

- The invariance equation is satisfied with an error quadratically smaller, i.e.

$$
\left\|E^{\prime}\right\|_{\mathcal{A}_{\rho-\delta}} \leq C_{8} \delta^{-2 \tau}\|E\|_{\mathcal{A}_{\rho}}^{2}, \quad\left\|E^{\prime}\right\|_{H^{m-\tau}} \leq C_{9}\|E\|_{H^{m}}^{2}
$$

- The procedure can be iterated to get a sequence of approximate solutions, say $\left\{K_{j}, \mu_{j}\right\}$. Convergence: through an abstract implicit function theorem, alternating the iteration with carefully chosen smoothings operators defined in a scale of Banach spaces (analytic functions or Sobolev spaces).

Step 5: local uniqueness

- Under smallness conditions, if there exist two solutions $\left(K_{a}, \mu_{a}\right),\left(K_{b}, \mu_{b}\right)$, then there exists $\psi \in \mathbb{R}^{n}$ such that

$$
K_{b}(\theta)=K_{a}(\theta+\psi) \quad \text { and } \quad \mu_{a}=\mu_{b}
$$

## Outline

## 1. Sketch of the Proof for CS systems

2. The a-posteriori approach

## 3. Break-down of quasi-periodic tori and attractors

## 4. KAM break-down criterion

## 5. Applications

## The a-posteriori approach

- Following [LGJV2005], for conformally symplectic systems, by adjusting the parameters under a suitable non-degeneracy condition near an approximately invariant torus, there is a true invariant torus, [CCL].
- A KAM theory with adjustment of parameters was developed in [Moser 1967], but with a parameter count different than in [CCL], since [Moser1967] is very general and does not take into account the geometric structure.


## The a-posteriori approach

- Following [LGJV2005], for conformally symplectic systems, by adjusting the parameters under a suitable non-degeneracy condition near an approximately invariant torus, there is a true invariant torus, [CCL].
- A KAM theory with adjustment of parameters was developed in [Moser 1967], but with a parameter count different than in [CCL], since [Moser1967] is very general and does not take into account the geometric structure.


## Advantages of the a-posteriori approach:

- it can be developed in any coordinate frame, not necessarily in action-angle variables;
the system is not assumed to be nearly integrable;
- instead of constructing a sequence of coordinate transformations on shrinking domains as in the perturbation approach, we shall compute suitable corrections to the embedding and the drift.


## Consequences of the a-posteriori approach for conformally symplectic systems (with R. Calleja, R. de la Llave):

- the method provides an efficient algorithm to determine the breakdown threshold, very suitable for computer implementations;
$\triangleright$ very refined quantitative estimates;
- local behavior near quasi-periodic solutions;
- partial justification of Greene's criterion (also with C. Falcolini);
- a bootstrap of regularity, which allows to state that all smooth enough tori are analytic, whenever the map is analytic;
- analyticity domains of the quasi-periodic attractors in the symplectic limit;
- whiskered tori for conformally symplectic systems.


## Outline

## 1. Sketch of the Proof for CS systems

## 2. The a-posteriori approach

3. Break-down of quasi-periodic tori and attractors

## 4. KAM break-down criterion

## 5. Applications

## Break-down of quasi-periodic tori and attractors

- We can compute a rigorous lower bound of the break-down threshold of invariant tori by means of KAM theory.
- Which is the real break-down value?
- In physical problems one can compare KAM result with a measure of the parameter. For example in the 3-body problem, $\varepsilon=\frac{m_{\text {Jupier }}}{m_{\text {Sun }}} \simeq 10^{-3}$.
- In model problems one needs to apply numerical techniques: KAM break-down criterion, Greene's technique, frequency analysis, etc.


## Outline

## 1. Sketch of the Proof for CS systems

## 2. The a-posteriori approach

## 3. Break-down of quasi-periodic tori and attractors

4. KAM break-down criterion

## 5. Applications

## KAM break-down criterion [Calleja, Celletti 2010]

- Solve the invariance equation for $(K, \mu)$ :

$$
f_{\mu} \circ K(\theta)=K(\theta+\omega) .
$$

- Numerically efficient criterion: close to breakdown, one has a blow up of the Sobolev norms of a trigonometric approximation of the embedding:

$$
K^{(L)}(\theta)=\sum_{|\ell| \leq L} \widehat{K}_{\ell} e^{i \ell \theta} .
$$

- A regular behavior of $\left\|K^{(L)}\right\|_{m}$ as $\varepsilon$ increases (for $\lambda$ fixed) provides evidence of the existence of the invariant attractor. Table: $\varepsilon_{\text {crit }}$ for $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

| Conservative case | Dissipative case |  |
| :---: | :---: | :---: |
| $\varepsilon_{\text {crit }}$ | $\lambda$ | $\varepsilon_{\text {crit }}$ |
| 0.9716 | 0.9 | 0.9721 |
|  | 0.5 | 0.9792 |

## Greene's method, periodic orbits and Arnold's tongues

- Greene's method: breakdown of $\mathcal{C}(\omega)$ related to the stability of $\mathcal{P}\left(\frac{p_{j}}{q_{j}}\right) \rightarrow \mathcal{C}(\omega)$, but in the dissipative case: drift in an interval - Arnold tongue - admitting a periodic orbit.


Figure: Left: Arnold’s tongues providing $\mu$ vs. $\varepsilon$ for 3 periodic orbits. Right: For $\lambda=0.9$ and $\varepsilon=0.5$ invariant attractor with frequency $\omega_{r}$ and approximating periodic orbits: $5 / 8(*), 8 / 13(+), 34 / 55(\times)$.

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal $\varepsilon$ for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

| $p_{j} / q_{j}$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ <br> $\varepsilon_{\text {Sob }}=[0.9716]$ | $\varepsilon_{p_{r}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ <br> $\varepsilon_{S o b}=[0.972]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ <br> $\varepsilon_{S o b}=[0.979]$ |
| :---: | :---: | :---: | :---: |
| $1 / 2$ | 0.9999 | 0.999 | 0.999 |

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal $\varepsilon$ for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

| $p_{j} / q_{j}$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ <br> $\varepsilon_{\text {Sob }}=[0.9716]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ <br> $\varepsilon_{\text {Sob }}=[0.972]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ <br> $\varepsilon_{\text {Sob }}=[0.979]$ |
| :---: | :---: | :---: | :---: |
| $1 / 2$ | 0.9999 | 0.999 | 0.999 |
| $2 / 3$ | 0.9582 | 0.999 | 0.999 |

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal $\varepsilon$ for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

| $p_{j} / q_{j}$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ <br> $\varepsilon_{\text {Sob }}=[0.9716]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ <br> $\varepsilon_{\text {Sob }}=[0.972]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ <br> $\varepsilon_{\text {Sob }}=[0.979]$ |
| :---: | :---: | :---: | :---: |
| $1 / 2$ | 0.9999 | 0.999 | 0.999 |
| $2 / 3$ | 0.9582 | 0.999 | 0.999 |
| $3 / 5$ | 0.9778 | 0.999 | 0.999 |

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal $\varepsilon$ for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

| $p_{j} / q_{j}$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ <br> $\varepsilon_{\text {Sob }}=[0.9716]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ <br> $\varepsilon_{\text {Sob }}=[0.972]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ <br> $\varepsilon_{S o b}=[0.979]$ |
| :---: | :---: | :---: | :---: |
| $1 / 2$ | 0.9999 | 0.999 | 0.999 |
| $2 / 3$ | 0.9582 | 0.999 | 0.999 |
| $3 / 5$ | 0.9778 | 0.999 | 0.999 |
| $5 / 8$ | 0.9690 | 0.993 | 0.992 |

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal $\varepsilon$ for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

| $p_{j} / q_{j}$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ <br> $\varepsilon_{S o b}=[0.9716]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ <br> $\varepsilon_{S o b}=[0.972]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ <br> $\varepsilon_{S o b}=[0.979]$ |
| :---: | :---: | :---: | :---: |
| $1 / 2$ | 0.9999 | 0.999 | 0.999 |
| $2 / 3$ | 0.9582 | 0.999 | 0.999 |
| $3 / 5$ | 0.9778 | 0.999 | 0.999 |
| $5 / 8$ | 0.9690 | 0.993 | 0.992 |
| $8 / 13$ | 0.9726 | 0.981 | 0.987 |

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal $\varepsilon$ for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

| $p_{j} / q_{j}$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ <br> $\varepsilon_{\text {Sob }}=[0.9716]$ | $\varepsilon_{p_{r}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ <br> $\varepsilon_{\text {Sob }}=[0.972]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ <br> $\varepsilon_{S o b}=[0.979]$ |
| :---: | :---: | :---: | :---: |
| $1 / 2$ | 0.9999 | 0.999 | 0.999 |
| $2 / 3$ | 0.9582 | 0.999 | 0.999 |
| $3 / 5$ | 0.9778 | 0.999 | 0.999 |
| $5 / 8$ | 0.9690 | 0.993 | 0.992 |
| $8 / 13$ | 0.9726 | 0.981 | 0.987 |
| $13 / 21$ | 0.9711 | 0.980 | 0.983 |

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal $\varepsilon$ for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

| $p_{j} / q_{j}$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ <br> $\varepsilon_{\text {Sob }}=[0.9716]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ <br> $\varepsilon_{\text {Sob }}=[0.972]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ <br> $\varepsilon_{\text {Sob }}=[0.979]$ |
| :---: | :---: | :---: | :---: |
| $1 / 2$ | 0.9999 | 0.999 | 0.999 |
| $2 / 3$ | 0.9582 | 0.999 | 0.999 |
| $3 / 5$ | 0.9778 | 0.999 | 0.999 |
| $5 / 8$ | 0.9690 | 0.993 | 0.992 |
| $8 / 13$ | 0.9726 | 0.981 | 0.987 |
| $13 / 21$ | 0.9711 | 0.980 | 0.983 |
| $21 / 34$ | 0.9717 | 0.976 | 0.980 |

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal $\varepsilon$ for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

| $p_{j} / q_{j}$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ <br> $\varepsilon_{\text {Sob }}=[0.9716]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ <br> $\varepsilon_{S o b}=[0.972]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ <br> $\varepsilon_{S o b}=[0.979]$ |
| :---: | :---: | :---: | :---: |
| $1 / 2$ | 0.9999 | 0.999 | 0.999 |
| $2 / 3$ | 0.9582 | 0.999 | 0.999 |
| $3 / 5$ | 0.9778 | 0.999 | 0.999 |
| $5 / 8$ | 0.9690 | 0.993 | 0.992 |
| $8 / 13$ | 0.9726 | 0.981 | 0.987 |
| $13 / 21$ | 0.9711 | 0.980 | 0.983 |
| $21 / 34$ | 0.9717 | 0.976 | 0.980 |
| $34 / 55$ | 0.9715 | 0.975 | 0.979 |

- Greene's method: let $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}$ be the maximal $\varepsilon$ for which the periodic orbit has a stability transition; the sequence converges to the breakdown threshold of $\omega_{r}=2 \pi \frac{\sqrt{5}-1}{2}$.

| $p_{j} / q_{j}$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}($ cons $)$ <br> $\varepsilon_{\text {Sob }}=[0.9716]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.9)$ <br> $\varepsilon_{\text {Sob }}=[0.972]$ | $\varepsilon_{p_{j}, q_{j}}^{\omega_{r}}(\lambda=0.5)$ <br> $\varepsilon_{S o b}=[0.979]$ |
| :---: | :---: | :---: | :---: |
| $1 / 2$ | 0.9999 | 0.999 | 0.999 |
| $2 / 3$ | 0.9582 | 0.999 | 0.999 |
| $3 / 5$ | 0.9778 | 0.999 | 0.999 |
| $5 / 8$ | 0.9690 | 0.993 | 0.992 |
| $8 / 13$ | 0.9726 | 0.981 | 0.987 |
| $13 / 21$ | 0.9711 | 0.980 | 0.983 |
| $21 / 34$ | 0.9717 | 0.976 | 0.980 |
| $34 / 55$ | 0.9715 | 0.975 | 0.979 |
| $55 / 89$ | 0.9716 | 0.974 | 0.979 |

## Outline

## 1. Sketch of the Proof for CS systems

## 2. The a-posteriori approach

## 3. Break-down of quasi-periodic tori and attractors

## 4. KAM break-down criterion

5. Applications

## Applications

- Standard map
- Rotational dynamics: spin-orbit problem
- Orbital dynamics: three-body problem


## KAM stability through confinement

- Confinement in 2-dimensional systems: dim(phase space)=4, dim(constant energy level $)=3$, $\operatorname{dim}($ invariant tori $)=2 \rightarrow$ confinement in phase space for $\infty$ times between bounding invariant tori

- Confinement no more valid for $n>2$ : the motion can diffuse through invariant tori, reaching arbitrarily far regions (Arnold's diffusion).


## standard map

## Results of the '90s

- [A.C., L. Chierchia] Let $\omega=2 \pi \frac{\sqrt{5}-1}{2} ;|\varepsilon| \leq 0.838$ ( $86 \%$ of Greene's value) there exists an invariant curve with frequency $\omega$.
- [R. de la Llave, D. Rana] Using accurate strategies and efficient computer-assisted algorithms, the result was improved to $93 \%$ of Greene's value.
- Very recent results [J.-L. Figueras, A. Haro, A. Luque] in http://arxiv.org/abs/1601.00084 reaching 99.9\%!!!


## standard map

- Using $K_{2}(\theta)=\theta+u(\theta)$, the invariance equation is

$$
\begin{equation*}
D_{1} D_{\lambda} u(\theta)-\varepsilon \sin (\theta+u(\theta))+\omega(1-\lambda)-\mu=0 \tag{1}
\end{equation*}
$$

with $D_{\lambda} u(\theta)=u\left(\theta+\frac{\omega}{2}\right)-\lambda u\left(\theta-\frac{\omega}{2}\right)$.

## Proposition [dissipative standard map, R. Calleja, A.C., R. de la Llave (2016)]

Let $\omega=2 \pi \frac{\sqrt{5}-1}{2}$ and $\lambda=0.9$; then, for $\varepsilon \leq \varepsilon_{K A M}$, there exists a unique solution $u=u(\theta)$ of (1), provided that $\mu=\omega(1-\lambda)+\left\langle u_{\theta} D_{1} D_{\lambda} u\right\rangle$.

- The drift $\mu$ must be suitably tuned and cannot be chosen independently from $\omega$.


## standard map

- Using $K_{2}(\theta)=\theta+u(\theta)$, the invariance equation is

$$
\begin{equation*}
D_{1} D_{\lambda} u(\theta)-\varepsilon \sin (\theta+u(\theta))+\omega(1-\lambda)-\mu=0 \tag{1}
\end{equation*}
$$

with $D_{\lambda} u(\theta)=u\left(\theta+\frac{\omega}{2}\right)-\lambda u\left(\theta-\frac{\omega}{2}\right)$.

## Proposition [dissipative standard map, R. Calleja, A.C., R. de la Llave (2016)]

Let $\omega=2 \pi \frac{\sqrt{5}-1}{2}$ and $\lambda=0.9$; then, for $\varepsilon \leq \varepsilon_{K A M}$, there exists a unique solution $u=u(\theta)$ of (1), provided that $\mu=\omega(1-\lambda)+\left\langle u_{\theta} D_{1} D_{\lambda} u\right\rangle$.

- The drift $\mu$ must be suitably tuned and cannot be chosen independently from $\omega$.


## standard map

- Using $K_{2}(\theta)=\theta+u(\theta)$, the invariance equation is

$$
\begin{equation*}
D_{1} D_{\lambda} u(\theta)-\varepsilon \sin (\theta+u(\theta))+\omega(1-\lambda)-\mu=0 \tag{1}
\end{equation*}
$$

with $D_{\lambda} u(\theta)=u\left(\theta+\frac{\omega}{2}\right)-\lambda u\left(\theta-\frac{\omega}{2}\right)$.
Proposition [dissipative standard map, R. Calleja, A.C., R. de la Llave (2016)]

Let $\omega=2 \pi \frac{\sqrt{5}-1}{2}$ and $\lambda=0.9$; then, for $\varepsilon \leq \varepsilon_{K A M}$, there exists a unique solution $u=u(\theta)$ of (1), provided that $\mu=\omega(1-\lambda)+\left\langle u_{\theta} D_{1} D_{\lambda} u\right\rangle$.

- The drift $\mu$ must be suitably tuned and cannot be chosen independently from $\omega$.
- Preliminary result: conf. symplectic version, careful estimates, continuation method using the Fourier expansion of the initial approximate solution $\Rightarrow$

$$
\varepsilon_{K A M}=99 \% \text { of the critical breakdown threshold. }
$$

## Rotational dynamics

The Moon and all evolved satellites, always point the same face to the host planet: 1:1 resonance, i.e. 1 rotation $=1$ revolution (Phobos, Deimos - Mars, Io, Europa, Ganimede, Callisto - Jupiter, Titan, Rhea, Enceladus, etc.). Only exception: Mercury in a $3: 2$ spin-orbit resonance ( 3 rotations $=2$ revolutions).

- Important dissipative effect: tidal torque, due to the non-rigidity of planets and satellites.


## Conservative spin-orbit problem

- Spin-orbit problem: triaxial satellite $\mathcal{S}$ (with $A<B<C$ ) moving on a Keplerian orbit around a central planet $\mathcal{P}$, assuming that the spin-axis is perpendicular to the orbit plane and coincides with the shortest physical axis.


## Conservative spin-orbit problem

- Spin-orbit problem: triaxial satellite $\mathcal{S}$ (with $A<B<C$ ) moving on a Keplerian orbit around a central planet $\mathcal{P}$, assuming that the spin-axis is perpendicular to the orbit plane and coincides with the shortest physical axis.
- Equation of motion:

$$
\ddot{x}+\varepsilon\left(\frac{a}{r}\right)^{3} \sin (2 x-2 f)=0, \quad \varepsilon=\frac{3}{2} \frac{B-A}{C} .
$$

- The (Diophantine) frequencies of the bounding tori are for example:

$$
\omega_{-} \equiv 1-\frac{1}{2+\frac{\sqrt{5}-1}{2}}, \quad \omega_{+} \equiv 1+\frac{1}{2+\frac{\sqrt{5}-1}{2}}
$$

## Proposition [spin-orbit model, A.C. (1990)]

Consider the spin-orbit Hamiltonian defined in $U \times \mathbb{T}^{2}$ with $U \subset \mathbb{R}$ open set. Then, for the true eccentricity of the Moon $e=0.0549$, there exist invariant tori, bounding the motion of the Moon, for any $\varepsilon \leq \varepsilon_{\text {Moon }}=3.45 \cdot 10^{-4}$.

## Dissipative spin-orbit problem

- Possible forthcoming estimates: spin-orbit equation with tidal torque given by

$$
\begin{equation*}
\ddot{x}+\varepsilon\left(\frac{a}{r}\right)^{3} \sin (2 x-2 f)=-\lambda(\dot{x}-\mu), \tag{2}
\end{equation*}
$$

where $\lambda, \mu$ depend on the orbital ( $e$ ) and physical properties of the satellite.

## Dissipative spin-orbit problem

- Possible forthcoming estimates: spin-orbit equation with tidal torque given by

$$
\begin{equation*}
\ddot{x}+\varepsilon\left(\frac{a}{r}\right)^{3} \sin (2 x-2 f)=-\lambda(\dot{x}-\mu) \tag{2}
\end{equation*}
$$

where $\lambda, \mu$ depend on the orbital ( $e$ ) and physical properties of the satellite.

## Proposition [A.C., L. Chierchia (2009)]

Let $\lambda_{0} \in \mathbb{R}_{+}, \omega$ Diophantine. There exists $0<\varepsilon_{0}<1$, such that for any $\varepsilon \in\left[0, \varepsilon_{0}\right]$ and any $\lambda \in\left[-\lambda_{0}, \lambda_{0}\right]$ there exists a unique function $u=u(\theta, t)$ with $\langle u\rangle=0$, such that

$$
x(t)=\omega t+u(\omega t, t)
$$

solves the equation of motion with $\mu=\omega\left(1+\left\langle u_{\theta}^{2}\right\rangle\right)$.

## three-body problem

- Consider the motion of a small body (with negligible mass) under the gravitational influence of two primaries, moving on Keplerian orbits about their common barycenter (restricted problem).
- Assume that the orbits of the primaries are circular and that all bodies move on the same plane: planar, circular, restricted three-body problem (PCR3BP).


## three-body problem

- Consider the motion of a small body (with negligible mass) under the gravitational influence of two primaries, moving on Keplerian orbits about their common barycenter (restricted problem).
- Assume that the orbits of the primaries are circular and that all bodies move on the same plane: planar, circular, restricted three-body problem (PCR3BP).
- Adopting suitable normalized units and action-angle Delaunay variables $(L, G) \in \mathbb{R}^{2},(\ell, g) \in \mathbb{T}^{2}$, we obtain a 2 d.o.f. Hamiltonian function:

$$
\mathcal{H}(L, G, \ell, g)=-\frac{1}{2 L^{2}}-G+\varepsilon R(L, G, \ell, g)
$$

- $\varepsilon$ primaries' mass ratio ( $\varepsilon=0$ Keplerian motion). Actions: $L=\sqrt{a}$, $G=L \sqrt{1-e^{2}}$.
- Degenerate Hamiltonian, but Arnold's isoenergetic non-degenerate (persistence of invariant tori on a fixed energy surface), i.e. setting $h(L, G)=-\frac{1}{2 L^{2}}-G$ :

$$
\operatorname{det}\left(\begin{array}{cc}
h^{\prime \prime}(L, G) & h^{\prime}(L, G) \\
h^{\prime}(L, G)^{T} & 0
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
-\frac{3}{L^{4}} & 0 & \frac{1}{L^{3}} \\
0 & 0 & -1 \\
\frac{1}{L^{3}} & -1 & 0
\end{array}\right)=\frac{3}{L^{4}} \neq 0 \quad \text { for all } L \neq 0 .
$$

- Dimension phase space $=4$, fix the energy: $\operatorname{dim}=3$; dimension invariant tori $=2$.

Result: The stability of the small body can be obtained by proving the existence of invariant surfaces which confine the motion of the asteroid on a preassigned energy level.

Sample: Sun, Jupiter, asteroid 12 Victoria with

$$
a_{\mathrm{V}} \simeq 0.449, \quad e_{\mathrm{V}} \simeq 0.220, \quad \imath_{\mathrm{V}} \simeq \frac{8.363-1.305}{360}=1.961 \cdot 10^{-2}
$$

- Size of the perturbing parameter: $\varepsilon_{J}=0.954 \cdot 10^{-3}$.
- Approximations: disregard $e_{J}=4.82 \cdot 10^{-2}$ (worst physical approximation), inclinations, gravitational effects of other bodies (Mars and Saturn), dissipative phenomena (tides, solar winds, Yarkovsky effect,...)
- Concrete example: Sun, Jupiter, asteroid 12 Victoria with $a=0.449$ (in Jupiter-Sun unit distance) and $e=0.22$, so that $L_{\mathrm{V}} \simeq 0.670, G_{\mathrm{V}} \simeq 0.654$.
- Select the energy level as $E_{\mathrm{V}}^{*}=-\frac{1}{2 L_{\mathrm{v}}^{2}}-G_{\mathrm{V}}+\varepsilon_{J}\left\langle R\left(L_{\mathrm{V}}, G_{\mathrm{V}}, \ell, g\right)\right\rangle \simeq-1.769$, where $\varepsilon_{J} \simeq 10^{-3}$ is the observed Jupiter-Sun mass-ratio. On such (3-dim) energy level prove the existence of two (2-dim) trapping tori with frequencies $\omega_{ \pm}$.
- Concrete example: Sun, Jupiter, asteroid 12 Victoria with $a=0.449$ (in Jupiter-Sun unit distance) and $e=0.22$, so that $L_{\mathrm{V}} \simeq 0.670, G_{\mathrm{V}} \simeq 0.654$.
- Select the energy level as $E_{\mathrm{V}}^{*}=-\frac{1}{2 L_{\mathrm{V}}^{2}}-G_{\mathrm{V}}+\varepsilon_{J}\left\langle R\left(L_{\mathrm{V}}, G_{\mathrm{V}}, \ell, g\right)\right\rangle \simeq-1.769$, where $\varepsilon_{J} \simeq 10^{-3}$ is the observed Jupiter-Sun mass-ratio. On such (3-dim) energy level prove the existence of two (2-dim) trapping tori with frequencies $\omega_{ \pm}$.


## Proposition [three-body problem, A.C., L. Chierchia (2007)]

Let $E=E_{\mathrm{V}}^{*}$. Then, for $|\varepsilon| \leq 10^{-3}$ the unperturbed tori with trapping frequencies $\omega_{ \pm}$can be analytically continued into KAM tori for the perturbed system on the energy level $\mathcal{H}^{-1}\left(E_{\mathrm{V}}^{*}\right)$ keeping fixed the ratio of the frequencies.

- Due to the link between $a, e$ and $L, G$, this result guarantees that $a, e$ remain close to the unperturbed values within an interval of size of order $\varepsilon$.

Corollary: The values of the perturbed integrals $L(t)$ and $G(t)$ stay close forever to their initial values $L_{\mathrm{V}}$ and $G_{\mathrm{V}}$ and the actual motion (in the mathematical model) is nearly elliptical with osculating orbital values close to the observed ones.

