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Sketch of the Proof for CS systems [Calleja, Celletti, de la
Llave 2013]

Step 1: approximate solution and linearization
Step 2: determine the new approximation
Step 3: solve the cohomological equation
Step 4: convergence of the iterative step
Step 5: local uniqueness

• Analytic tools:

exponential decay of Fourier coefficients of analytic functions;

estimates to bound the derivatives in smaller domains;

quantitative analysis of the cohomology equations;

abstract implicit function theorem.

NOTATION: From now on drop the underline to denote vectors.
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Step 1: approximate solution and linearization

• Let (K, µ) be an approximate solution: fµ ◦ K(θ)− K(θ + ω) = E(θ).

• Using the Lagrangian property in coordinates, DKT(θ) J ◦K(θ) DK(θ) = 0,
the tangent space is

Range
(

DK(θ)
)
⊕ Range

(
V(θ)

)
with V(θ) = J−1 ◦ K(θ) DK(θ)N(θ) and N(θ) = (DK(θ)T DK(θ))−1.

• Define:
M(θ) = [DK(θ) | V(θ)] .
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Lemma
Up to a remainder R:

Dfµ ◦ K(θ) M(θ) = M(θ + ω)

(
Id S(θ)
0 λId

)
+ R(θ) . (R)

Proof: Recall M(θ) = [DK(θ) | V(θ)].
Part 1: taking the derivative of fµ ◦ K(θ) = K(θ + ω) + E(θ), one gets
Dfµ ◦ K(θ) DK(θ) = DK(θ + ω) + DE(θ);
Part 2: due to the remark on the tangent space, one has:

Dfµ ◦ K(θ) V(θ) = DK(θ + ω) S(θ) + V(θ + ω) λId + h.o.t.

with

S(θ) ≡ N(θ + ω)TDK(θ + ω)TDfµ ◦ K(θ) J−1 ◦ K(θ) DK(θ)N(θ)

− N(θ + ω)TDK(θ)TJ−1 ◦ K(θ)DK(θ)N(θ + ω)λId .
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Step 2: determine a new approximation K′ = K + MW, µ′ = µ+ σ satisfying

fµ′ ◦ K′(θ)− K′(θ + ω) = E′(θ) . (APPR− INV)′

• Expanding in Taylor series:

fµ ◦ K(θ) + Dfµ ◦ K(θ) M(θ)W(θ) + Dµfµ ◦ K(θ)σ

−K(θ + ω)−M(θ + ω) W(θ + ω) + h.o.t. = E′(θ) .

• Recalling that fµ ◦ K(θ)− K(θ + ω) = E(θ), the new error E′ is
quadratically smaller provided:

Dfµ ◦ K(θ) M(θ)W(θ)−M(θ + ω) W(θ + ω) + Dµfµ ◦ K(θ)σ = −E(θ) .
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• Combine the previous formula

Dfµ ◦ K(θ) M(θ)W(θ)−M(θ + ω) W(θ + ω) + Dµfµ ◦ K(θ)σ = −E(θ)

and the Lemma:

Dfµ ◦ K(θ) M(θ) = M(θ + ω)

(
Id S(θ)
0 λId

)
+ R(θ) , (R)

to get equations for W = (W1,W2) and σ:

M(θ + ω)

(
Id S(θ)
0 λId

)
W(θ)−M(θ + ω) W(θ+ω) = −E(θ)−Dµfµ◦K(θ)σ .
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•Multiplying by M(θ + ω)−1 and writing W = (W1,W2), one gets(
Id S(θ)
0 λId

)(
W1(θ)
W2(θ)

)
−
(

W1(θ + ω)
W2(θ + ω)

)
=

(
−Ẽ1(θ)− Ã1(θ)σ

−Ẽ2(θ)− Ã2(θ)σ

)
.

with Ẽj(θ) = −(M(θ + ω)−1E)j, Ãj(θ) = (M(θ + ω)−1Dµfµ ◦ K)j.

• In components:

W1(θ)−W1(θ + ω) = −Ẽ1(θ)− S(θ)W2(θ)− Ã1(θ)σ (A)

λW2(θ)−W2(θ + ω) = −Ẽ2(θ)− Ã2(θ)σ (B)

A. Celletti (Univ. Roma Tor Vergata) KAM theory and Celestial Mechanics Lisbon, 29-30 March 2016 9 / 33



• Cohomological eq.s with constant coefficients for (W1,W2), σ for known S,
Ẽ ≡ (Ẽ1, Ẽ2), Ã ≡ [Ã1| Ã2]:

W1(θ)−W1(θ + ω) = −Ẽ1(θ)− S(θ)W2(θ)− Ã1(θ)σ (A)

λW2(θ)−W2(θ + ω) = −Ẽ2(θ)− Ã2(θ)σ (B)

• (A) involves small (zero) divisors, since for k = 0 one has 1− eik·ω = 0 in

W1(θ)−W1(θ + ω) =
∑

k

Ŵ1,k eik·θ(1− eik·ω) .

• (B) always solvable for any |λ| 6= 1 by a contraction mapping argument.

• Non–degeneracy condition: computing the averages of eqs. (A), (B),
determine 〈W2〉, σ by solving (W2 = 〈W2〉+ B0 + σB̃0)(

〈S〉 〈SB0〉+ 〈Ã1〉
(λ− 1)Id 〈Ã2〉

)(
〈W2〉
σ

)
=

(
−〈SB̃0〉 − 〈Ẽ1〉
−〈Ẽ2〉

)
.
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(λ− 1)Id 〈Ã2〉
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Step 3: solve the cohomological equations
• Non–average parts of W1, W2: solve cohomological equations of the form

λw(θ)− w(θ + ω) = η(θ)

with η : Tn → C known and with zero average.

Lemma
Let |λ| ∈ [A,A−1] for 0 < A < 1, ω ∈ D(C, τ), η ∈ Aρ, ρ > 0 or η ∈ Hm,
m ≥ τ , and ∫

Tn
η(θ) dθ = 0 .

Then, there is one and only one solution w with zero average and

‖w‖Aρ−δ
≤ C6 C δ−τ‖η‖Aρ ,

‖w‖Hm−τ ≤ C7 C ‖η‖Hm .

A. Celletti (Univ. Roma Tor Vergata) KAM theory and Celestial Mechanics Lisbon, 29-30 March 2016 11 / 33



Sketch of the proof. Expand η as

η(θ) =
∑
j∈Zn

η̂je2πij·θ

and using
λw(θ)− w(θ + ω) = η(θ)

find
ŵj = (λ− e2πij·ω)−1 η̂j ;

when λ = 1, j = 0, it must be η̂0 = 0.

Estimate the multipliers using Cauchy bounds and use the Diophantine
condition ([Rüssmann]).
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Step 4: convergence of the iterative step
• The invariance equation is satisfied with an error quadratically smaller, i.e.

‖E′‖Aρ−δ
≤ C8δ

−2τ‖E‖2
Aρ

, ‖E′‖Hm−τ ≤ C9‖E‖2
Hm .

• The procedure can be iterated to get a sequence of approximate solutions,
say {Kj, µj}. Convergence: through an abstract implicit function theorem,
alternating the iteration with carefully chosen smoothings operators defined in
a scale of Banach spaces (analytic functions or Sobolev spaces).

Step 5: local uniqueness
• Under smallness conditions, if there exist two solutions (Ka, µa), (Kb, µb),
then there exists ψ ∈ Rn such that

Kb(θ) = Ka(θ + ψ) and µa = µb .
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The a-posteriori approach

• Following [LGJV2005], for conformally symplectic systems, by adjusting
the parameters under a suitable non-degeneracy condition near an
approximately invariant torus, there is a true invariant torus, [CCL].

• A KAM theory with adjustment of parameters was developed in
[Moser1967], but with a parameter count different than in [CCL], since
[Moser1967] is very general and does not take into account the geometric
structure.

Advantages of the a-posteriori approach:
I it can be developed in any coordinate frame, not necessarily in action-angle
variables;
I the system is not assumed to be nearly integrable;
I instead of constructing a sequence of coordinate transformations on
shrinking domains as in the perturbation approach, we shall compute suitable
corrections to the embedding and the drift.
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Consequences of the a-posteriori approach for conformally symplectic
systems (with R. Calleja, R. de la Llave):

I the method provides an efficient algorithm to determine the breakdown
threshold, very suitable for computer implementations;

B very refined quantitative estimates;

I local behavior near quasi–periodic solutions;

I partial justification of Greene’s criterion (also with C. Falcolini);

I a bootstrap of regularity, which allows to state that all smooth enough tori
are analytic, whenever the map is analytic;

I analyticity domains of the quasi–periodic attractors in the symplectic limit;

I whiskered tori for conformally symplectic systems.
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Break–down of quasi–periodic tori and attractors

•We can compute a rigorous lower bound of the break–down threshold of
invariant tori by means of KAM theory.

•Which is the real break–down value?

• In physical problems one can compare KAM result with a measure of the
parameter. For example in the 3-body problem, ε = mJupiter

mSun
' 10−3.

• In model problems one needs to apply numerical techniques: KAM
break–down criterion, Greene’s technique, frequency analysis, etc.
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KAM break–down criterion [Calleja, Celletti 2010]

• Solve the invariance equation for (K, µ):

fµ ◦ K(θ) = K(θ + ω) .

• Numerically efficient criterion: close to breakdown, one has a blow up of
the Sobolev norms of a trigonometric approximation of the embedding:

K(L)(θ) =
∑
|`|≤L

K̂` ei`θ .

• A regular behavior of ‖K(L)‖m as ε increases (for λ fixed) provides evidence
of the existence of the invariant attractor. Table: εcrit for ωr = 2π

√
5−1
2 .

Conservative case Dissipative case
εcrit λ εcrit

0.9716 0.9 0.9721
0.5 0.9792
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Greene’s method, periodic orbits and Arnold’s tongues

• Greene’s method: breakdown of C(ω) related to the stability of
P(pj

qj
)→ C(ω), but in the dissipative case: drift in an interval - Arnold tongue

- admitting a periodic orbit.

 3.5
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 3.9

 4

 4.1

 4.2

 0  1  2  3  4  5  6

y

x

Figure: Left: Arnold’s tongues providing µ vs. ε for 3 periodic orbits. Right: For
λ = 0.9 and ε = 0.5 invariant attractor with frequency ωr and approximating periodic
orbits: 5/8 (∗), 8/13 (+), 34/55 (×).
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• Greene’s method: let εωr
pj,qj

be the maximal ε for which the periodic orbit has
a stability transition; the sequence converges to the breakdown threshold of
ωr = 2π

√
5−1
2 .

pj/qj εωr
pj,qj

(cons) εωr
pj,qj

(λ = 0.9) εωr
pj,qj

(λ = 0.5)
εSob = [0.9716] εSob = [0.972] εSob = [0.979]

1/2 0.9999 0.999 0.999

2/3 0.9582 0.999 0.999
3/5 0.9778 0.999 0.999
5/8 0.9690 0.993 0.992
8/13 0.9726 0.981 0.987

13/21 0.9711 0.980 0.983
21/34 0.9717 0.976 0.980
34/55 0.9715 0.975 0.979
55/89 0.9716 0.974 0.979
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Outline

1. Sketch of the Proof for CS systems

2. The a-posteriori approach

3. Break–down of quasi–periodic tori and attractors

4. KAM break–down criterion

5. Applications
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Applications

•
�� ��Standard map

• Rotational dynamics:
�� ��spin–orbit problem

• Orbital dynamics:
�� ��three–body problem
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KAM stability through confinement

• Confinement in 2–dimensional systems: dim(phase space)=4, dim(constant
energy level)=3, dim(invariant tori)=2→ confinement in phase space for∞
times between bounding invariant tori
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• Confinement no more valid for n > 2: the motion can diffuse through
invariant tori, reaching arbitrarily far regions (Arnold’s diffusion).
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Conservative standard map

Results of the ’90s

• [A.C., L. Chierchia] Let ω = 2π
√

5−1
2 ; |ε| ≤ 0.838 (86% of Greene’s value) there

exists an invariant curve with frequency ω.
• [R. de la Llave, D. Rana] Using accurate strategies and efficient computer–assisted
algorithms, the result was improved to 93% of Greene’s value.
• Very recent results [J.-L. Figueras, A. Haro, A. Luque] in
http://arxiv.org/abs/1601.00084 reaching 99.9%!!!
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Dissipative standard map

• Using K2(θ) = θ + u(θ), the invariance equation is

D1Dλu(θ)− ε sin(θ + u(θ)) + ω(1− λ)− µ = 0 (1)

with Dλu(θ) = u(θ + ω
2 )− λu(θ − ω

2 ).

Proposition [dissipative standard map, R. Calleja, A.C., R. de la Llave
(2016)]

Let ω = 2π
√

5−1
2 and λ = 0.9; then, for ε ≤ εKAM, there exists a unique

solution u = u(θ) of (1), provided that µ = ω(1− λ) + 〈uθ D1Dλu〉.

• The drift µ must be suitably tuned and cannot be chosen independently from ω.

• Preliminary result: conf. symplectic version, careful estimates, continuation
method using the Fourier expansion of the initial approximate solution⇒

εKAM =
�� ��99% of the critical breakdown threshold .
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Rotational dynamics

The Moon and all evolved satellites, always point the same face to the host planet:
1:1 resonance, i.e. 1 rotation = 1 revolution (Phobos, Deimos - Mars, Io, Europa,
Ganimede, Callisto - Jupiter, Titan, Rhea, Enceladus, etc.).
Only exception: Mercury in a 3:2 spin–orbit resonance (3 rotations = 2 revolutions).

• Important dissipative effect: tidal torque, due to the non–rigidity of planets and
satellites.
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Conservative spin–orbit problem

• Spin–orbit problem: triaxial satellite S (with A < B < C) moving on a
Keplerian orbit around a central planet P , assuming that the spin–axis is
perpendicular to the orbit plane and coincides with the shortest physical axis.

• Equation of motion:

ẍ + ε(
a
r
)3 sin(2x− 2f ) = 0 , ε =

3
2

B− A
C

.

• The (Diophantine) frequencies of the bounding tori are for example:

ω− ≡ 1− 1

2 +
√

5−1
2

, ω+ ≡ 1 +
1

2 +
√

5−1
2

.

Proposition [spin–orbit model, A.C. (1990)]

Consider the spin–orbit Hamiltonian defined in U × T2 with U ⊂ R open set.
Then, for the true eccentricity of the Moon e = 0.0549, there exist invariant
tori, bounding the motion of the Moon, for any ε ≤ εMoon = 3.45 · 10−4.
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ẍ + ε(
a
r
)3 sin(2x− 2f ) = 0 , ε =

3
2

B− A
C

.

• The (Diophantine) frequencies of the bounding tori are for example:

ω− ≡ 1− 1

2 +
√

5−1
2

, ω+ ≡ 1 +
1

2 +
√

5−1
2

.

Proposition [spin–orbit model, A.C. (1990)]

Consider the spin–orbit Hamiltonian defined in U × T2 with U ⊂ R open set.
Then, for the true eccentricity of the Moon e = 0.0549, there exist invariant
tori, bounding the motion of the Moon, for any ε ≤ εMoon = 3.45 · 10−4.

A. Celletti (Univ. Roma Tor Vergata) KAM theory and Celestial Mechanics Lisbon, 29-30 March 2016 29 / 33



Dissipative spin–orbit problem

• Possible forthcoming estimates: spin–orbit equation with tidal torque given
by

ẍ + ε
(a

r

)3
sin(2x− 2f ) = −λ(ẋ− µ) , (2)

where λ, µ depend on the orbital (e) and physical properties of the satellite.

Proposition [A.C., L. Chierchia (2009)]

Let λ0 ∈ R+, ω Diophantine. There exists 0 < ε0 < 1, such that for any
ε ∈ [0, ε0] and any λ ∈ [−λ0, λ0] there exists a unique function u = u(θ, t)
with 〈u〉 = 0, such that

x(t) = ω t + u(ωt, t)

solves the equation of motion with µ = ω (1 + 〈u2
θ〉).
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Conservative three–body problem

• Consider the motion of a small body (with negligible mass) under the
gravitational influence of two primaries, moving on Keplerian orbits about
their common barycenter (restricted problem).
• Assume that the orbits of the primaries are circular and that all bodies move
on the same plane: planar, circular, restricted three–body problem (PCR3BP).

• Adopting suitable normalized units and action–angle Delaunay variables
(L,G) ∈ R2, (`, g) ∈ T2, we obtain a 2 d.o.f. Hamiltonian function:

H(L,G, `, g) = − 1
2L2 − G + εR(L,G, `, g) .

• ε primaries’ mass ratio (ε = 0 Keplerian motion). Actions: L =
√

a,
G = L

√
1− e2.

• Degenerate Hamiltonian, but Arnold’s isoenergetic non–degenerate (persistence of
invariant tori on a fixed energy surface), i.e. setting h(L,G) = − 1

2L2 − G:

det
(

h′′(L,G) h′(L,G)
h′(L,G)T 0

)
= det

 − 3
L4 0 1

L3

0 0 −1
1
L3 −1 0

 =
3
L4 6= 0 for all L 6= 0 .
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• Dimension phase space = 4 , fix the energy: dim = 3; dimension invariant
tori = 2.

Result: The stability of the small body can be obtained by proving the
existence of invariant surfaces which confine the motion of the asteroid on a
preassigned energy level.

Sample: Sun, Jupiter, asteroid 12 Victoria with

aV ' 0.449 , eV ' 0.220 , ıV '
8.363− 1.305

360
= 1.961 · 10−2 .

• Size of the perturbing parameter: εJ = 0.954 · 10−3.
• Approximations: disregard eJ = 4.82 · 10−2 (worst physical
approximation), inclinations, gravitational effects of other bodies (Mars and
Saturn), dissipative phenomena (tides, solar winds, Yarkovsky effect,...)
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• Concrete example: Sun, Jupiter, asteroid 12 Victoria with a = 0.449 (in
Jupiter–Sun unit distance) and e = 0.22, so that LV ' 0.670, GV ' 0.654.
• Select the energy level as E∗V = − 1

2L2
V
− GV + εJ〈R(LV,GV, `, g)

〉
' −1.769,

where εJ ' 10−3 is the observed Jupiter–Sun mass–ratio. On such (3–dim) energy
level prove the existence of two (2–dim) trapping tori with frequencies ω±.

Proposition [three–body problem, A.C., L. Chierchia (2007)]

Let E = E∗V. Then, for |ε| ≤ 10−3 the unperturbed tori with trapping
frequencies ω± can be analytically continued into KAM tori for the perturbed
system on the energy levelH−1

(
E∗V) keeping fixed the ratio of the

frequencies.

• Due to the link between a, e and L, G, this result guarantees that a, e remain
close to the unperturbed values within an interval of size of order ε.

Corollary: The values of the perturbed integrals L(t) and G(t) stay close
forever to their initial values LV and GV and the actual motion (in the
mathematical model) is nearly elliptical with osculating orbital values close to
the observed ones.
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