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Introduction

• At the ICM in 1954 A.N. Kolmogorov gave the closing lecture titled “The
general theory of dynamical systems and classical mechanics" on the
persistence of quasi–periodic motions under small perturbations of an
integrable system. V.I. Arnold (1963) used a different approach and
generalized to Hamiltonian systems with degeneracies, while J.K. Moser
(1962) covered the finitely differentiable case.

• The theory can be developed under two main assumptions:

the frequency of motion must obey a Diophantine condition (to get rid of
the classical small divisor problem);

a non–degeneracy condition must be satisfied (to ensure the solution of
the cohomological equations providing the approximate solutions).

• KAM theory was motivated by stability problems in Celestial Mechanics,
following the works of Laplace, Lagrange, Poincaré, etc.
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• KAM theory applies to nearly–integrable systems of the form

H(y, x) = h(y) + εf (y, x) ,

where y ∈ Rn (actions), x ∈ Tn (angles), ε > 0 is a small parameter.

• In the integrable approximation ε = 0 Hamilton’s equations are solved as

ẏ = −∂h(y)

∂x
= 0 ⇒ y(t) = y(0) = const.

ẋ =
∂h(y)

∂y
≡ ω(y) ⇒ x(t) = ω (y(0)) t + x(0) ,

where (y(0), x(0)) are the initial conditions. The solution takes place on a
torus with frequency ω = ω(y(0)); we look for its persistence as ε 6= 0.
•We shall consider also nearly–integrable dissipative systems, like (λ > 0
dissipative constant, µ drift term):

ẏ = −ε∂f (y, x)

∂x
−λ(y− µ) ,

ẋ = ω(y) + ε
∂f (y, x)

∂y
.
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• An application to the N–body problem in Celestial Mechanics was given by
Arnold, who proved the existence of a positive measure set of initial data
providing quasi–periodic tori for nearly circular and nearly coplanar orbits.

• Quantitative estimates on a three–body model were given by M. Hénon,
based on the original versions; the results were far from reality (at best for
primaries mass-ratio 10−48 vs. Jupiter-Sun 10−3) and Hénon concluded:

“Ainsi, ces théorèmes, bien que d’un très grand intérêt théorique, ne semblent
pas pouvoir en leur état actuel être appliqués á des problèmes pratiques”.

• A change came with computer–assisted proofs and a–posteriori approach:
. long computations performed by a computer; rounding–off and propagation
errors controlled through interval arithmetic;
. near a nondegenerate approximately invariant torus, there is a true invariant
torus (started in [Llave-Gonzalez-Jorba-Villanueva 2005] in the context of
symplectic systems).
. . . One obtains KAM results consistent with the numerical (or physical)
expectation.
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Non–degeneracy conditions

i) An n–dimensional Hamiltonian function h = h(y), y ∈ V , being V an open
subset of Rn, is said to be non–degenerate if

det
(∂2h(y)

∂y2

)
6= 0 for any y ∈ V ⊂ Rn . (1)

Condition (1) is equivalent to require that the frequencies vary with the
actions as

det
(∂ω(y)

∂y

)
6= 0 for any y ∈ V .

The non–degeneracy condition guarantees the persistence of invariant tori
with fixed frequency.
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ii) h = h(y), y ∈ V ⊂ Rn, is isoenergetically non–degenerate if

det

 ∂2h(y)
∂y2

∂h(y)
∂y

∂h(y)
∂y

>
0

 6= 0 for any y ∈ V ⊂ Rn . (2)

This condition can be written as

det

(
∂ω(y)
∂y ω

ω> 0

)
6= 0 for any y ∈ V ⊂ Rn .

The isoenergetic non–degeneracy condition (independent from i)) guarantees
that the frequency ratio varies as one crosses the tori on fixed energy surfaces.
iii) An n–dimensional Hamiltonian functionH(y, x) = h(y) + εf (y, x),
y ∈ Rn, x ∈ Tn, is said to be properly degenerate if h(y) does not depend
explicitly on some action variables. In this case, the perturbation f (y, x) is said
to remove the degeneracy if f (y, x) = f̄ (y) + εf1(y, x) with the property that
h(y) + εf̄ (y) is non–degenerate.
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Examples:
• Degenerate Hamiltonian:

h(y) = ω0 · y .

• Non-degenerate Hamiltonian:

h(y) =
y2

2
,

which implies
∂2h(y)
∂y2 = Id.

• Isoenergetically non-degenerate Hamiltonian:

h(y1, y2) =
y2

1
2

+ y2 ,

which does not satisfy the non-degeneracy, since
∂2h(y)
∂y2 = 0, while

det

 ∂2h(y)
∂y2

∂h(y)
∂y

∂h(y)
∂y

T
0

 = det

 1 0 y1
0 0 1
y1 1 0

 6= 0 .
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Diophantine conditions

• To apply KAM theory assume that the unperturbed Hamiltonian satisfies a
non-degeneracy condition.
• The second requirement is that the frequency ω satisfies a strong
irrationality assumption, namely the diophantine condition.

Definition

The frequency vector ω ∈ Rn satisfies a Diophantine condition of type (C, τ)
for some C ∈ R+, τ ≥ 1, if for any integer vector m ∈ Rn\{0}:

|ω · m|−1 ≤ C|m|τ . (3)

For maps ω ∈ Rn satisfies the Diophantine condition if

|
ω · q
2π
− p|−1 ≤ C|q|τ , p ∈ Z , q ∈ Zn\{0} C > 0 , τ > 0 .

A. Celletti (Univ. Roma Tor Vergata) KAM theory and Celestial Mechanics Lisbon, 29-30 March 2016 13 / 31



SOME PROPERTIES OF DIOPHANTINE NUMBERS:

• The size of the sets D(C, τ) increases as C or τ increases.

• There are no Diophantine vectors in Rn with τ < n− 1.

• The set of Diophantine vectors with τ = n− 1 in Rn has zero Lebesgue
measure (but it is everywhere dense).

• For any τ > n− 1 almost every vector in Rn is τ -Diophantine, namely the
complement has zero Lebesgue measure although it is everywhere dense.
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Quasi-periodic motions

• A conditionally periodic motion is given by a function t 7→ f (ω1t, . . . , ωnt),
where f (x1, . . . , xn) is periodic in all variables; the vector ω = (ω1, . . . , ωn) is
called frequency.

• Conditionally periodic motions with incommensurable frequencies are
called quasi-periodic motions.

• An invariant torus is an invariant manifold diffeomorphic to the standard
torus Tn. Any trajectory on an invariant torus carrying quasi-periodic motions
is dense on the torus.
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Theorem (Kolmogorov)
Given the Hamiltonian system

H(y, x) = h(y) + εf (y, x) , y ∈ Rn , x ∈ Tn ; (4)

satisfying the non–degeneracy condition

det
(∂2h(y)

∂y2

)
6= 0 for any y ∈ V ⊂ Rn , (5)

having fixed a diophantine frequency ω for the unperturbed system, if ε is
sufficiently small there still exists an invariant torus on which the motion is
quasi–periodic with frequency ω.
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• Later extended in different settings by V.I. Arnold and J. Moser: KAM
theorem.
• For low values of ε there exists an invariant surface with diophantine
frequency ω; as far as ε increases the invariant torus with frequency ω is more
and more distorted and displaced, until ε reaches a critical value at which the
torus breaks down (Figure 1).
• KAM theorem provides a lower bound on the breakdown threshold;
computer–assisted KAM estimates provide, in simple examples, results on the
parameters which are consistent with the physical values.
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Figure: The Poincarè section of the spin–orbit problem for 20 different initial
conditions and for e = 0.1. Left: ε = 10−3, center: ε = 10−2, right: ε = 10−1.
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Conservative and conformally symplectic KAM theorems

•We state the KAM theorems in a general setting, precisely:
� symplectic maps (e.g. the conservative standard map),
� conformally symplectic maps (e.g. the dissipative standard map).
•Many physical problems are described by conformally symplectic systems,
characterized by the property that they transform the symplectic form into a
multiple of itself.
• Example of conformally symplectic systems:

(i) Hamiltonian systems with a dissipation proportional to the velocity, like
in the spin–orbit problem with tidal torque;

(ii) Euler-Lagrange equations of exponentially discounted systems, which
are models typically found in finance, when inflation is present and one
needs to minimize the cost in present money;

(iii) Gaussian thermostats (mechanical systems with forcing and a
thermostating term based on the Gauss Least Constraint Principle for
nonholonomic constraints).
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• LetM = U × Tn be the phase space with U ⊆ Rn open, simply connected domain
with smooth boundary;M is endowed with the standard scalar product and a
symplectic form Ω.

Definition

A diffeomorphism f onM is conformally symplectic, if there exists a function
λ :M→ R such that (f ∗ denotes the pull–back via f )

f ∗Ω = λΩ .

• For n = 1 any diffeomorphism is conformally symplectic with λ depending on the
coordinates; λ =constant for n ≥ 2; λ = 1 in the symplectic case.

Definition
We say that the frequency vector ω ∈ Rn satisfies the Diophantine condition if

|
ω · q
2π
− p|−1 ≤ C|q|τ , p ∈ Z , q ∈ Zn\{0} C > 0 , τ > 0 ;

D(C, τ) = set of Diophantine vectors, which is of full Lebesgue measure in Rn.
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FLOWS:

Definition
We say that a vector field X is a conformally symplectic flow if, denoting by
LX the Lie derivative, there exists a function λ : R2n → R such that

LXΩ = λΩ .

The time t-flow Φt satisfies

(Φt)
∗Ω = eλtΩ ,

where Ω is the symplectic form such that Ωx(u, v) = (u, J(x)v).

Definition
In the case of flows the Diophantine condition is:

|ω · k|−1 ≤ C|k|τ , k ∈ Zn\{0} ,

for C > 0, τ > 0.
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EXAMPLE OF CONFORMALLY SYMPLECTIC MAP: the dissipative
standard map.

y′ = λy + µ+ ε sin(x)

x′ = x + λy + µ+ ε sin(x) .

• f ∗Ω(u, v) = Ω(Df u,Df v) ? =? λΩ(u, v) with u = (u1, u2), v = (v1, v2).

• Ω(u, v) = (u, Jv) with J =

(
0 1
−1 0

)
.

• Df =

(
λ ε cos x
λ 1 + ε cos x

)
.
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NOTATION: From now on drop the underline to denote vectors.

• A quasi–periodic solution is an orbit of the form (An, θn) = K(n · ω), ω irrational.

Definition

LetM⊆ Rn × Tn be a symplectic manifold and let f :M→M be a symplectic
map. A KAM surface with frequency ω ∈ D(C, τ) is an n–dimensional invariant
surface described parametrically by an embedding K : Tn →M, which is the
solution of the invariance equation:

f ◦ K(θ) = K(θ + ω) . (6)

For a family fµ of conformally symplectic diffeomorphisms depending on a real
parameter µ, look for µ = µ∗ and an embedding K, such that

fµ∗ ◦ K(θ) = K(θ + ω) .

For conformally symplectic vector fields Xµ look for µ∗ and K, such that

Xµ∗ ◦ K(θ) = (ω · ∂θ) K(θ) .
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EXAMPLE OF PARAMETRIC REPRESENTATION: the dissipative
standard map.

y′ = λy + µ+ ε sin(x)

x′ = x + y′ .

• x = θ + K1(θ), y = K2(θ), θ′ = θ + ω.
• From the first equation:

K2(θ + ω)− λK2(θ) = µ+ ε sin(θ + K1(θ)) .

• From the second equation:

K2(θ) = ω + K1(θ)− K1(θ − ω) .

• Combining the last two equations:

K1(θ+ω)− (1+λ)K1(θ)+λK1(θ−ω) = −(1−λ)ω+µ+ε sin(θ+K1(θ)) .
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• Invariant tori are Lagrangian; if f is confor. symplectic, |λ| 6= 1 and K
satisfies the invariance equation:

K∗Ω = 0 . (7)

If f is symplectic and ω is irrational, then the torus is Lagrangian (i.e. with maximal dimension

and isotropic, namely the symplectic form on the manifold restricts to zero, i.e. each tangent

space is an isotropic subspace of the ambient manifold’s tangent space).

Definition
Analytic norm. Given ρ > 0, we define Tn

ρ as the set

Tn
ρ = {θ ∈ Cn/(2πZ)n : Re(θ) ∈ Tn, |Im(θj)| ≤ ρ , j = 1, ..., n} ;

we denote by Aρ the set of analytic functions in Int(Tn
ρ) with the norm

‖f‖ρ = sup
θ∈Tn

ρ

|f (θ)| .

Sobolev norm. Expand in Fourier series f (z) =
∑

k∈Zn f̂ke2πikz and for m > 0:

Hm =
{

f : Tn → C : ‖f‖2
m ≡

∑
k∈Zn

| f̂k |2(1 + |k|2)m <∞
}
.
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Theorem (conservative case, R. de la Llave et al.)
ω ∈ D(C, τ), f : Rn × Tn → Rn × Tn symplectic and analytic, K0 approximate
solution: f ◦ K0(θ)− K0(θ + ω) = E0(θ). Let N(θ) ≡ (DK0(θ)T DK0(θ))−1; let
J = J(x) be the matrix representing Ω at x: (Ωx(u, v) = (u, J(x)v)) and let S(θ) be

S(θ) ≡ N(θ + ω)TDK0(θ + ω)T
[
Df (K0(θ)) J(K0(θ))−1DK0(θ) N(θ)

−J(K0(θ + ω))−1 DK0(θ + ω) N(θ + ω) A(θ)
]

with A(θ) = Id. Assume that S satisfies the non–degeneracy condition

det 〈S(θ)〉 6= 0 ,

(〈·〉=average). Let 0 < δ < ρ
2 ; if the solution is sufficiently approximate:

‖E0‖ρ ≤ C1 C−4 δ4τ (C1 > 0) ,

then there exists an exact solution Ke = Ke(θ) of (6), such that

‖Ke − K0‖ρ−2δ < C2 C2 δ−2τ ‖E0‖ρ (C2 > 0) .
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Theorem (conformally sympl. case, R. Calleja, A.C., R. de la Llave)
Let ω ∈ D(C, τ), fµ : Rn × Tn → Rn × Tn conformally symplectic, (K0, µ0)
approximate solution: fµ0 ◦ K0(θ)− K0(θ + ω) = E0(θ). Let M(θ) be the 2n× 2n
matrix

M(θ) = [DK0(θ) | J(K0(θ))−1 DK0(θ)N(θ)] .

Assume the following non–degeneracy condition:

det
(

〈S〉 〈SB0〉+ 〈Ã1〉
(λ− 1)Id 〈Ã2〉

)
6= 0 ,

with A(θ) = λ Id, Ã1, Ã2 first and second n columns of Ã = M−1(θ + ω)Dµ0 fµ0 ◦ K0,
B0 = B− 〈B〉 solution of λB0(θ)− B0(θ + ω) = −(Ã2)0(θ). Let 0 < δ < ρ

2 ; if the
solution is sufficiently approximate, i.e.

‖E0‖ρ ≤ C3 C−4 δ4τ (C3 > 0) ,

there exists an exact solution (Ke, µe), such that

‖Ke − K0‖ρ−2δ ≤ C4 C2 δ−2τ ‖E0‖ρ , |µe − µ0| ≤ C5 ‖E0‖ρ (C4,C5 > 0) .
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• A remark on the non–degeneracy conditions.
• For the conservative standard map

y′ = y + ε g(x)

x′ = x + y′ ,
∂x′

∂y
6= 0 ,

non–degeneracy equivalent to the twist condition, namely the lift transforms
any vertical line always on the same side.

• For the (generalized) dissipative standard map

y′ = λy + p(µ) + ε g(x)

x′ = x + y′ ,
∂x′

∂y
6= 0 &

dp(µ)

dµ
6= 0 ,

non–degeneracy condition involves the twist condition and a non–degeneracy
w.r.t. to the parameters.
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Computer–assisted proofs

• The KAM proof requires very long computations (initial approximation,
KAM algorithm, etc). A computer is needed due to the high number of
operations involved, but it introduces rounding-off and propagation errors→
interval arithmetic.
� The computer stores real numbers using a sign–exponent–fraction
representation with a number of digits in the fraction and the exponent,
varying with the machine. The result of any elementary operation (+,-,*,/)
usually produces an approximation of the true result (other calculations can be
reduced to a sequence of elementary operations).
� Interval arithmetic: represent any real number as an interval and perform
elementary operations on intervals, rather than on real numbers (computer
time increases).
� Example: a + b. Assume a ∈ [a1, a2], b ∈ [b1, b2]. Then c = a + b is
[c1, c2] ≡ [a1 + b1, a2 + b2]. The end points c1, c2 are themselves produced by
an elementary operation and therefore affected by rounding errors. Take a
slightly smaller value for c1 and slightly bigger for c2, so that a + b ∈ [c1, c2].
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