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Conservative Standard Map

It is described by the equations (discrete analogue of the spin-orbit problem)

y′ = y + ε f (x) y ∈ R , x ∈ T
x′ = x + y′ ,

with ε > 0 perturbing parameter, f = f (x) analytic function.

• Classical (Chirikov) standard map: f (x) = sin x.

• Equivalent notation:

yj+1 = yj + ε sin(xj)

xj+1 = xj + yj+1 = xj + yj + ε sin(xj) for j ≥ 0 .
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• PROPERTIES:
A) SM is integrable for ε = 0, non–integrable for ε 6= 0:

yj+1 = yj = y0

xj+1 = xj + yj+1 = xj + yj = x0 + jy0 for j ≥ 0 , (1)

namely yj is constant and xj increases by y0.

A1) Case y0 = 2π p
q with p, q integers (q 6= 0). Then, on the line y = y0:

x1 = x0 + 2π
p
q
, x2 = x0 + 4π

p
q
, ..., xq = x0 + 2πp = x0 !!!

Therefore, the orbit is PERIODIC with period 2πq and the interval [0, 2π) is
spanned p times.

A2) Case y0 = 2π-irrational. Then, on the line y = y0, the iterates of x0 fill
densely the line y = y0→ QUASI-PERIODIC MOTIONS (KAM theory): the
iterates never come back to the initial condition, but close as you wish after a
sufficient number of iterations.
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B) The mapping (1) is conservative, since the determinant of the
corresponding Jacobian is equal to one; in fact, setting fx(xj) ≡ ∂f (xj)

∂x , the
determinant of the Jacobian (1) is equal to

det
(

1 εfx(xj)
1 1 + εfx(xj)

)
= 1 . (2)

C) Fixed points are obtained by solving the equations

yj+1 = yj

xj+1 = xj ;

♦ from the first equation yj+1 = yj + εf (xj)⇒ f (xj) = 0;
♦ from the second equation xj+1 = xj + yj+1⇒ yj+1 = 0 = y0;
♦ if f (x) = sin x, fixed points are (y0, x0) = (0, 0) and (y0, x0) = (0, π).
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D) Linear stability is investigated by computing the first variation:(
δyj+1
δxj+1

)
=

(
1 εfx(x0)
1 1 + εfx(x0)

) (
δyj

δxj

)
.

The eigenvalues of the linearized system are determined by solving the
characteristic equation (f = sin x):

λ2 − (2± ε)λ+ 1 = 0 ,

with + for (0, 0) and - for (0, π).

♦ One eigenvalue associated to (0, 0) is greater than one⇒ the fixed point is
unstable.
♦ For ε < 4 the eigenvalues associated to (0, π) are complex conjugate with
real part less than one⇒ (0, π) is stable.
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E) Twist property:
∂x′

∂y
= 1 > 0

F) The standard map is generated by F(x, x′) = 1
2(x
′ − x)2 + ε cos x, so that

y = −∂F
∂x

, y′ =
∂F
∂x′

.

G) The standard map can be obtained from a discrete Lagrangian variational
principle. For any configuration sequence {..., xs−1, xs, xs+1, ...} define the
discrete action as

A[..., xs−1, xs, xs+1, ...] =
∑

s

F(xs, xs+1) .

An orbit is a sequence which is a critical point of A, yielding the discrete
Euler-Lagrange equation:

xs+1 − 2xs + xs−1 = ε sin x .
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ε = 0: the system is integrable, only quasi–periodic curves (lines), a stable
equilibrium point at (0, π) and an unstable at (0, 0).
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epsilon=0.1

ε = 0.1: switch on the perturbation, the system is non–integrable, the
quasi–periodic (KAM) curves are distorted, the stable point (0, π) is
surrounded by elliptic islands.
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ε = 0.2: increasing the perturbation, the amplitude of the islands increases.
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epsilon=0.3

ε = 0.3: The amplitude of the islands increases more.
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ε = 0.4: ... and more... minor resonances appear.
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ε = 0.5: ... other minor resonances.
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ε = 0.6: A marked chaotic region around the unstable point.
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ε = 0.7: the chaotic region increases in size...
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ε = 0.8: less and less rotational tori survive.
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ε = 0.9: for a large perturbation, a lot of chaos, a few quasi–periodic curves,
islands around higher–order periodic orbits.
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ε = 1: very large perturbation, no more quasi–periodic curves.
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Figure: Conservative Chirikov standard map as ε varies.
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Summary

� For ε = 0 one gets an integrable mapping, since the dynamics can be exactly
solved: all motions are periodic or quasi–periodic. A non–integrable system occurs
when ε 6= 0.
� For ε 6= 0 but sufficiently small, the quasi–periodic invariant curves are slightly
displaced and deformed w.r.t. the integrable case. Periodic orbits are surrounded by
librational curves.
� As ε increases the rotational curves are more and more deformed and distorted,
while the librational curves increase their amplitude; chaotic motions start to appear
and they fill an increasing region as ε grows. Close to criticality invariant tori leave
place to cantori, which are still invariant sets, but they are graphs of a Cantor set.
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Figure: Conservative standard map (b = 1, c = 0). Sx ε = 0.5; Dx ε = 1.
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Dissipative Standard Map:

It is described by the equations (discrete analogue of the spin-orbit problem
with tidal torque)

y′ = λy + µ+ ε g(x) y ∈ R , x ∈ T
x′ = x + y′ , λ, µ, ε ∈ R , ε ≥ 0 ,

0 < λ < 1 dissipative parameter, µ = drift parameter.

• PROPERTIES:
• λ = 1, µ = 0 one recovers the conservative SM.
• λ = 0 one obtains the one–dimensional mapping x′ = x + µ+ εg(x).
• λ = 0 and ε = 0 one obtains the circle map x′ = x + µ.
• λ 6= 1, dissipative, since the determinant of the Jacobian amounts to λ.
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• The drift µ plays a very important role. In fact, consider ε = 0 and look for
an invariant solution, such that

y′ = y ⇒ λy + µ = y ⇒ y =
µ

1− λ
.

If µ = 0, then y = 0!

• This shows that for ε = 0 the trajectory {y = µ
1−λ} × T is invariant.
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• The dynamics associated to the DSM admits attracting periodic orbits,
invariant curve attractors as well as strange attractors, which have an intricate
geometrical structure; introducing a suitable definition of dimension, the
strange attractors are shown to have a non–integer dimension (namely a
fractal dimension).
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Figure: SMD attractors. a) Invariant attractor; b) periodic of period 10; c) invariant attractor
coexisting with 0/1, 1/2, 1/1 periodic orbits; d) strange attractor.
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• Basins of attraction for the coexisting case (500× 500 random initial
conditions with preliminary iterations).
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Figure: Basins of attraction of a) 0/1 periodic orbit; b) 1/2 periodic orbit; c)
quasi–periodic attractor; d) 1/1 periodic orbit.
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Figure: Dissipative standard map as ε varies for λ = 0.8.
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4-dimensional standard map

• An extension of the standard map to study higher dimensional systems is the
4-dimensional standard map:

y′1 = y1 + ε (g1(x1) + η r1(x1, x2))

x′1 = x1 + y′1
y′2 = y2 + ε (g2(x1) + η r2(x1, x2))

x′2 = x2 + y′2 .

•When the coupling parameter η = 0, we have 2 uncoupled standard maps.
•When η 6= 0, we have coupled equations.
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Non-twist standard map

• An extension of the standard map to non-twist maps was introduced by
del-Castillo-Negrete and Morrison

y′ = y + ε sin(x)

x′ = x + a(1− y′2)

for a ∈ R. The map is area-preserving, but violates the twist condition:

∂x′

∂y
= −2a(y + ε sin x) = 0

along the curve y = −ε sin x.
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Figure: Non-twist standard map.
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