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Hamiltonian formalism

Mechanical system with n degrees of freedom1; for q̇ ∈ Rn, q ∈ Rn:
• T = T(q̇) kinetic energy,
• V = V(q) potential energy.
• Lagrangian function defined as

L(q̇, q) ≡ T(q̇)− V(q) .

• Introduce the momenta conjugated to the coordinates through:

p ≡
∂L(q̇, q)

∂q̇
. (1)

• From Lagrange equations

d
dt
∂L(q̇, q)

∂q̇
=
∂L(q̇, q)

∂q
⇒ ṗ =

∂L(q̇, q)

∂q
.

1i.e., the minimum number of independent coordinates necessary to describe the
mechanical system.
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• It follows that

dL =
∂L
∂q̇

dq̇ +
∂L
∂q

dq = pdq̇ + ṗdq = d(p q̇)− q̇dp + ṗdq ,

namely
d(p q̇− L) = −ṗdq + q̇dp . (2)

• Introduce the Hamiltonian function as

H(p, q) ≡ p q̇− L(q̇, q) ,

where q̇ must be expressed in terms of p and q by inverting (1) (Legendre
transformation). From (2) one obtains:

dH(p, q) = −ṗdq + q̇dp ;

being

dH(p, q) =
∂H
∂p

dp +
∂H
∂q

dq .
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• Equating, one finds the Hamilton’s equations:

q̇ =
∂H(p, q)

∂p

ṗ = −
∂H(p, q)

∂q
. (3)

• In the Lagrangian case one needs to solve a differential equation of the
second order; in the Hamiltonian case one needs to find the solution of two
differential equations of the first order.
• In terms of the components of p and q, Hamilton’s equations are:

q̇i =
∂H(p, q)

∂pi

ṗi = −
∂H(p, q)

∂qi
, i = 1, ..., n .
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Example.

Given the Lagrangian function

L(q̇, q) =
1
2

q̇2 + qq̇ + 3q2 ,

the corresponding Hamiltonian function and the solution of Hamilton’s
equations are found as follows.

The momentum conjugated to q is

p =
∂L
∂q̇

= q̇ + q ,

which yields
q̇ = p− q .

Therefore:

H(p, q) = pq̇− L

=
1
2

p2 − pq− 5
2

q2 .
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The corresponding Hamilton’s equations are

ṗ = −∂H
∂q

= p + 5q

q̇ =
∂H
∂p

= p− q .

Differentiating the second equation with respect to time one has

q̈ = ṗ− q̇ = 6q ,

namely
q̈− 6q = 0 ,

whose solution is given by

q(t) = A1e
√

6t + A2e−
√

6t ,

where A1 and A2 are arbitrary constants depending on the initial data. From
p = q + q̇ one finds the solution for the momentum:

p(t) =
(

A1 +
√

6A1

)
e
√

6t +
(

A2 −
√

6A2

)
e−
√

6t .
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Canonical transformations

• GivenH = H(p, q) with n d.o.f. (p ∈ Rn, q ∈ Rn), consider the coordinate
transformation

P = P(p, q)

Q = Q(p, q) , (4)

where P ∈ Rn, Q ∈ Rn. The coordinate change (4) is said to be canonical, if
the equations of motion in the variables (P,Q) keep the Hamiltonian
structure, namely the transformed variables satisfy Hamilton’s equations with
respect to a new Hamiltonian, sayH1 = H1(P,Q).

• Let us derive the conditions under which the transformation (4) is canonical.
Introduce the notation

x =

(
q
p

)
, z =

(
Q
P

)
and let z = z(x) be the transformation (4).
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• Set

J ≡
(

0 In

−In 0

)
,

where In is the n–dimensional identity matrix; Hamilton’s equations can be
written as

ẋ = J
∂H(x)

∂x
.

• Let M =
∂z
∂x ; then, the transformed equations are

ż =
∂z
∂x

ẋ = Mẋ = MJ
∂H(x)

∂x
= MJ

∂H(x)

∂z
∂z
∂x

= MJMT ∂H(x)

∂z
.

• The canonicity condition is equivalent to require that

MJMT = J ; (5)

equation (5) implies that the matrix M is symplectic, in which case we have
Hamilton’s equations w.r.t. z, provided the new Hamiltonian is
H1(z) = H(x(z)).
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• A canonicity criterion is obtained through the Poisson brackets, which, for
functions f = f (p, q), g = g(p, q), are defined as

{f , g} =

n∑
k=1

∂f
∂qk

∂g
∂pk
− ∂f
∂pk

∂g
∂qk

.

• A direct computation shows that MJMT = J is equivalent to say that a
transformation is canonical if

{Qi,Qj} = {Pi,Pj} = 0 , {Qi,Pj} = δij , i, j = 1, ..., n .

• In the one–dimensional case (n = 1) it suffices to verify that

{Q,P} = 1 ,

since {Q,Q} and {P,P} are identically zero.
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• The generating function of a canonical transformation is introduced as
follows. Consider a time–dependent canonical transformation

Q = Q(q, p, t)

P = P(q, p, t) . (6)

The generating function is a function of the form

F = F(q,Q, t) ,

such that the following transformation rules hold:

p =
∂F
∂q

P = −∂F
∂Q

.

• IfH1 = H1(P,Q, t) is the Hamiltonian in the new set of variables, then

H1(P,Q, t) = H(p, q, t) +
∂F
∂t

.
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• Equivalent forms of the generating functions are the following:
i) F = F(q,P, t) with transformation rules:

p =
∂F
∂q

Q =
∂F
∂P

;

ii) F = F(p,Q, t) with transformation rules:

q = −∂F
∂p

P = −∂F
∂Q

; (7)

iii) F = F(p,P, t) with transformation rules:

q = −∂F
∂p

Q =
∂F
∂P

.
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Example

Compute α and β for which the following transformation is canonical:

P = αpeβq

Q =
1
α

e−βq ;

for such values find the corresponding generating function.

Use Poisson brackets to check canonicity in the one–dimensional case:

{Q,P} ≡ ∂Q
∂q

∂P
∂p
− ∂Q
∂p

∂P
∂q

= 1 .

Therefore one has:
−β
α

e−βq · αeβq = 1 ,

which is satisfied for β = −1 and for any α 6= 0.
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In this case the transformation becomes:

P = αpe−q

Q =
1
α

eq . (8)

Let us look for a generating function F = F(q,P), whose transformation rules
are given by

p =
∂F
∂q

Q =
∂F
∂P

.

Inverting the first of (8) one has:

p =
P
α

eq

Q =
1
α

eq .
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• Therefore it should be
∂F
∂q

=
P
α

eq , (9)

namely F(q,P) = P
αeq + f (P), where f (P) is a total function of P.

• Analogously, from the relation

∂F
∂P

=
1
α

eq , (10)

one finds F(q,P) = P
αeq + g(q), where g(q) depends only on the variable q.

• Comparing the solutions of (9) and (10) one obtains f (P) = g(q) = 0, thus
yielding

F(q,P) =
P
α

eq .

A. Celletti (Univ. Roma Tor Vergata) KAM theory and Celestial Mechanics Lisbon, 29-30 March 2016 16 / 35



Integrable systems

• A Hamiltonian system with n d.o.f. is said to be integrable, if there exist n
integrals, U1, ..., Un, which satisfy the following assumptions:
1) the integrals are in involution: {Uj,Uk} = 0 for any j, k = 1, ..., n;
2) the integrals are independent, i.e. the following matrix has rank n:

∂U1
∂p1

. . . ∂U1
∂pn

∂U1
∂q1

. . . ∂U1
∂qn

...
∂Un
∂p1

. . . ∂Un
∂pn

∂Un
∂q1

. . . ∂Un
∂qn

 ;

3) in place of 2) one can require the non–singularity condition:

det


∂U1
∂p1

. . . ∂U1
∂pn

...
∂Un
∂p1

. . . ∂Un
∂pn

 6= 0 ;

notice that this condition is stronger than the independence of item 2).
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• Having fixed a point (p
0
, q

0
), let α0 = U(p

0
, q

0
), where U ≡ (U1, ...,Un).

• For α ∈ Rn define the manifold Mα as

Mα = {(p, q) ∈ R2n : U1(p, q) = α1, ...,Un(p, q) = αn} .

The integrability of a Hamiltonian system can be obtained through the
following Liouville–Arnold theorem.

Theorem
Suppose that the HamiltonianH(p, q), p, q ∈ Rn, admits n integrals U1, ...,
Un, satisfying the above conditions of involution and non–singularity. Assume
that the manifold Mα is compact in a suitable neighborhood of α0. Then,
there exists a transformation of coordinates from (p, q) to (I, ϕ) with I ∈ Rn,
ϕ ∈ Tn, such that the new HamiltonianH1 takes the form

H1(I, ϕ) ≡ h(I) ,

for a suitable function h = h(I).
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Action–angle variables

• Consider the mechanical system described byH(p, q), where p ∈ Rn,
q ∈ Rn. When dealing with integrable systems one can introduce a canonical
transformation C : (p, q) ∈ R2n → (I, ϕ) ∈ Rn × Tn, such that the
transformed Hamiltonian depends only on the action variables I:

H ◦ C(I, ϕ) = h(I) = h(I1, ..., In) ,

for some function h = h(I). The coordinates (I, ϕ) are known as action–angle
variables.
• Liouville–Arnold theorem provides an explicit algorithm to construct the
action–angle variables: introduce as transformed momenta the actions
(I1, ..., In) defined through the relation

Ij =

∮
pj dqj ,

where the integral is computed over a full cycle of motion.
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• The canonical variables conjugated to (I1, ..., In) are named angle variables;
they will be denoted as (ϕ1, ..., ϕn).
• Hamilton’s equations become integrable; indeed, let us define the frequency
or rotation vector as

ω = ω(I) =
∂h(I)
∂I

;

then, one has:

İ = −∂h(I)
∂ϕ

= 0

ϕ̇ =
∂h(I)
∂I

= ω(I) .

• The action I is constant along the motion, I = I0, while the angle ϕ varies as
ϕ = ω(I0)t + ϕ0, where (I0, ϕ0) denote the initial conditions.
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Example.

Action–angle variables for the harmonic oscillator:

H(p, q) =
1

2m
(p2 + ω2q2) .

SettingH(p, q) = E, one has

p2 = 2mE − ω2q2

and the corresponding action variable is:

I =

∮
pdq =

∮ √
2mE − ω2q2 dq .

Let q =
√

2mE
ω2 sinϑ; then, one has:

I =

∫ 2π

0

√
2mE − 2mE sin2 ϑ

√
2mE
ω2 cosϑ dϑ

=
2mE
ω

∫ 2π

0
cos2 ϑdϑ =

2πmE
ω

.
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The Hamiltonian in action–angle variables becomes:

E = H(I) =
ω

2πm
I .

The associated Hamilton’s equations are

İ = 0

ϕ̇ =
ω

2πm
,

whose solution is found to be

I(t) = I(0)

ϕ(t) =
ω

2πm
t + ϕ(0) .
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Nearly–integrable systems

Nearly–integrable systems of the form

H(I, ϕ) = h(I) + εf (I, ϕ) ,

where I ∈ Rn (actions), ϕ ∈ Tn (angles), ε > 0 is a small parameter.
• In the integrable approximation ε = 0 Hamilton’s equations are solved as

İ = −∂h(I)
∂ϕ

= 0 ⇒ I(t) = I(0) = const.

ϕ̇ =
∂h(I)
∂I
≡ ω(y) ⇒ ϕ(t) = ω (I(0)) t + ϕ(0) ,

where (I(0), ϕ(0)) are the initial conditions.

• In the three–body problem, the integrable part coincides with the Keplerian
two–body interaction, while the perturbing function provides the gravitational
attraction with the third body and the perturbing parameter is the mass ratio of
the primaries.
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Nearly–integrable dissipative systems

• In many cases it is useful to consider also nearly–integrable dissipative
systems, like (λ > 0 dissipative constant, µ drift term):

İ = −ε∂f (I, ϕ)

∂ϕ
− λ(I − µ),

ϕ̇ = ω(I) + ε
∂f (I, ϕ)

∂I
.

• It represents, for example, the spin-orbit model subject to a tidal torque, due
to the non-rigidity of the satellite.
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Dynamical behaviors

In a dynamical system we can have:
• Periodic motion: a solution of the equations of motion which retraces its
own steps after a given interval of time, called period.

• Quasi–periodic motion: a solution of the equations of motion which comes
indefinitely close to its initial conditions at regular intervals of time, though
ever exactly retracing itself.

• Regular motion: we will refer to periodic or quasi–periodic orbits as regular
motions.

• Chaotic motion: irregular motion showing an extreme sensitivity to the
choice of the initial conditions.

♦ The divergence of the orbits will be measured by the Lyapunov exponents
or by the FLI.
♦ Chaotic motions are unpredictable, but not necessarily unstable.
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Poincaré maps

• The Poincaré map reduces the study of a continuous system to that of a
discrete mapping.

• Consider the n–dimensional differential system

ż = f (z) , z ∈ Rn ,

where f = f (z) is a generic regular vector field.

• Let Φ(t; z0) be the flow at time t with initial condition z0.

• Let Σ be an (n− 1)–dimensional hypersurface, the Poincaré section,
transverse to the flow, which means that if ν(z) denotes the unit normal to Σ
at z, then f (z) · ν(z) 6= 0 for any z in Σ.
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• For a periodic orbit , let zp be the intersection of the periodic orbit with Σ; let
U be a neighborhood of zp on Σ. Then, for any z ∈ U we define the Poincaré
map as Φ′ = Φ(T; z), where T is the first return time of the flow on Σ.
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• Example of the Poincaré map of the spin–orbit model:

ẋ = y

ẏ = −ε(a
r

)3 sin(2x− 2f )

with

r = a(1− e cos u)

tan
f
2

=

√
1 + e
1− e

tan
u
2

` = u− e sin u

` = n t + `0 .

• One–dimensional, time–dependent (2π–periodic in time):

ẋ = y

ẏ = εg(x, t) .
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• Poincaré maps of the spin–orbit problem taking the intersections at t = 2πk,
k ∈ Z+ for ε = 0.024, 0.1, 0.4.
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Lyapunov exponents

• Lyapunov exponents provide the divergence of nearby orbits.
• Quantitatively, two nearby trajectories at initial distance δz(0) diverge at a
rate given by (within the linearized approximation)

|δz(t)| ≈ eλt|δz(0)| ,

where λ is the Lyapunov exponent.
• The rate of separation can be different in different directions→ there is a
spectrum of Lyapunov exponents equal in number to the dimension of the
phase space.
• The largest Lyapunov exponent is called Maximal Lyapunov exponent
(MLE) and a positive value gives an indication of chaos. It can be computed
as

λ = lim
t→∞

lim
δz(0)→0

1
t

ln
|δz(t)|
|δz(0)|

.
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FLI

• Fast Lyapunov Indicator (FLI) is obtained as the value of the MLE at a fixed
time, say T .
• A comparison of the FLIs as the initial conditions are varied allows one to
distinguish between different kinds of motion (regular, resonant or chaotic).
• Consider ż = f (z), z ∈ Rn and let the variational equations be

v̇ =
(∂f (z)

∂z

)
v .

• Definition of the FLI: given the initial conditions z(0) ∈ Rn, v(0) ∈ Rn, the
FLI at time T ≥ 0 is provided by the expression

FLI(z(0), v(0),T) ≡ sup
0<t≤T

log ||v(t)|| .
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•MLE for the spin-orbit problem in the x, px = y plane: green/red = regular
motions, blue = chaotic dynamics
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... and in the parameter space ε versus px (with x0 = 0) for Mercury (left) and
Moon (right)
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