An overview of Celestial Mechanics: from the stability of the planets to flight dynamics

Alessandra Celletti

Dipartimento di Matematica

SUMMARY

- The Solar System
- Celestial Mechaniçs
- Thé 2-body problem
- .,The 3-body problem
- Cháas
- Orbital resonances
- Interplanetary highways
- Spin-orbit resonancés
- Is the Solar system stable?

1. The solar system

- Sun
- Rocky planets
- Gas planets
- Dwarf planets
- Satellites
- Asteroids and comets

Sun

- Average size star at the border of a spiral arm of the Milky Way
- At about half of its life (4.5 billion years)
- Will evolve as a red giant and then a white dwarf
- Mass: $2^{*} 10^{30} \mathrm{Kg}$
- Radius 695,000 Km
- Composition: H-He

Internal rocky planets

Mercury, Venus, Earth, Mars Small, rocky, none or few satellites

Asteroids: 580.000 oggetti catalogati

Between Mars and Jupiter, irregular forms and sizes, sometimes with satellites

Internal Solar system

Asteroids-green, NEO-red, comets-blue.

External gaseous planets

Jupiter, Saturn, Uranus, Neptune

Big, gas, many satellites and rings

External Solar system: asteroids-yellow, in comets-white

From above

Profile

Kuiper belt

Thousands rocky-icy objects (among which
Pluto), at the border of the Solar system

Oort cloud

- 30,000-100,000 AU
- Billion icy objects
- Long-period comets, inserted in the Solar system by strong perturbations (close encounter of a star or passage of the Sun through a giant molecular cloud).
$1 \mathrm{AU}=$ Sun-Earth distance $=\mathbf{1 5 0}$ milion km.

2. Celestial Mechanics

- CELESTIAL MECHANICS studies the dynamics of the objects in the Solar system: planets, satellites, asteroids, etc.
- CELESTIAL MECHANICS studies also the dynamics of extrasolar planetary systems
- FLIGHT DYNAMICS studies the motion of artificial satellites and interplanetary highways (first space mission: Sputnik 1 on 4 October 1957)

Aristotle 384-322 BC
 $$
\begin{array}{lc} \text { epicycles } & \text { Tolomeus } \\ 85-165 \end{array}
$$

 Tolomeus

 Tolomeus 85-165

 85-165}

Tycho Brahe	scientific method	Kepler	gravitation
$1546-1601$	\bullet	$1571-1630$	

observations
Galileo
1564-1642

Poincarè 1854-1912

Stability theorems

Kolmogorov, Arnold, Moser, Nekhoroshev XX century

3. 2 body problem

- Simplified model considering only the interaction between 2 objects
- Newton's law:
- Kepler's laws

$$
F=-\frac{G M m}{d^{2}}
$$

Johannes Kepler (1571-1630)

- Kepler believed in the heliocentric theory of Copernicus
- He wrote several books where astronomy was mixed with mathematics, physics, philosophy and music
- Studied for several years the astronomical data on the motion of the planets, collected byTycho Brahe (1546-1601), who built an astronomical observatory called "Uraniborg" - "The castle of the sky"
- Found 3 fundamental laws governing the 2 -body problem

I Kepler law: all planets move on ellipses with the Sun in one focus

II Kepler law: all planets sweep equal areas in equal times

kepler2a.avi

III Kepler law:
 the square of the period of revolution is proportional to the cube of the semimajor axis

4. How NOT to go on Mars

- Earth and Mars on circular orbits with radii r_{1}, r_{2}
- Wait for Earth-Mars
coonjunction and go on a straught line!
> Gravity curves the trajectories
$>$ the orbit of Mars is reached perpendicolarly
$>$ the Sun has a gravitazional influence on the satellite.

5. How to go on Mars

- Walter Hohmann (1880-1945) orbits
- 1 = initial orbit
- 2 = Hohmann transfer orbit
- $3=$ target orbit
- Orbit 2 has perihelion on orbit 1 and aphelion on orbit 3
- Transfer with less fuel

- Switch the engines to insert the satellite in orbit 2 and then in orbit $3(\Delta v)$
- $\Delta \mathrm{V}$ measures the fuel consumption = cost of the missione
- Launch window is the time interval to have that the satellite reaches Mars

6. The three body problem

- What happens when we consider 3 bodies, e.g. Sun-EarthJupiter?
- Kepler laws are only an approximation and the 3 body problem cannot be solved exactly!
- Perturbation theory: allows to compute successive approximations of the solution of the three body problem
- Sun-Earth-Jupiter : mass(Jupiter) = mass(Sun) / $1000 \rightarrow$

2-body Sun-Earth

$+$
Small perturbation due to Jupiter

Keplerian ellipse: basic approximation

First approximation (red curve)

Second approximation (green curve)

Third approximation (blue curve)

- Perturbation theory allows to determined an approximate solution of the equations of motion (Laplace, Lagrange, Delaunay, Leverrier, etc., XVIIIXIX century).
- Charles Delaunay (1816-1872) developed a very precise lunar motion based on perturbation theory.

THEERIE

MOUVEMENT DE LA LUNE.

Chapitre premier.

1. Soient $\lambda, y, \%$ les coordontaio, de la Tene tuppothes a des ases rectangulairs fises dans lieppace $; \xi, x, \zeta$ les condonnées de la Lane, et $\xi^{\prime}, r^{\prime}, \zeta^{\prime}$ edtes dul Soleil rapportion all mèmes axes; M la masse du lia Terre, me celle de la Jume, et m' celle du Soleil.
Lee Soleil, la lame et la Terre itant suppencis sattocer muturikment dapiér la joi de \owtoni, les equations diffirenertielies do mus.

 T. xxvili.
$m^{\prime \prime}:=2$. T. xxyIII .

chapitae u. - développement de. R
${ }^{29}$

$+\left(3 x+\frac{11}{4} r^{\prime \prime}\right) \cos \left(x-x_{x}-3\right)$
$+\left(\alpha+\frac{5}{2} \alpha^{\prime \prime}\right) \cos \left(2-8^{\prime}\right)$
$+\left(\frac{53}{8} f^{\prime \prime}+\frac{39}{16} c^{\prime}\right) \cos \left(\alpha-8^{\prime}-3 r\right)$
$+\left(\frac{11}{8} e^{\prime}+\frac{49}{16} r^{\prime}\right) \cos \left(a-z^{\prime}+c\right)$
$+\frac{72}{6} r \cos (a-r-s r)$
$+\frac{23}{12} n^{\prime} \cos \left(\alpha-8^{\prime}+2 r\right)$
$+\frac{295}{128} \cdot \cos \left(x-\delta^{\prime}-5 r\right)$
$+\frac{343}{128} f^{\prime} \cdot \cos \left(\alpha-g^{\prime}+3 c^{\prime}\right)$)
$\frac{\frac{0}{}^{\prime}}{j^{\prime}} \cos (\alpha-3 k)=\left(1-6 e^{\prime \prime}+\frac{933}{69} k^{\prime \prime}\right) \cos \left(\alpha-3 g^{\prime}-3 r\right)$
$+\left(5 z^{\prime}-32 e^{\prime \prime}\right) \cos \left(\alpha-3 z^{\prime}-4 z^{\prime}\right)$
$-\left(i-\frac{5}{4} k^{\prime}\right) \cos \left(a-3 k^{\prime}-r r^{\prime}\right)$
$+\left(\frac{12}{8} n^{\prime \prime}-\frac{3065}{4^{8}} k^{\prime}\right) \cos \left(x-3 k^{\prime}-5 r:\right.$
$+\left(\frac{1}{8} \mu+\frac{1}{48} \theta^{\prime \prime}\right) \cos \left(\alpha-3 g^{\prime}-f\right)$
$1+\frac{163}{4} f^{\prime \prime} \cos \left(a-3 \varepsilon^{\prime}-6 r\right)$
$+\frac{3543}{384} f^{\prime} \cos \left(a-3 z^{\prime}-\gamma r\right): \because$
$+\frac{1}{38 f^{\prime \prime}} \cos \left(\alpha-3 g^{\prime}+f\right)$

chapitae n. - développearat de R. 33 auquel on aurait dia s'arréter, d'aprés ee qui vient d'itre dit, el cela pour des raisons spéciales qui seront indiquées plas tard (chapitre IV).

Ajoutons encore que, e^{\prime} étant environ trois fois plus petit que γ et c, dans le rejet des ternes d'un ordre supérieur à celui auquel on voulait s'arrèter, on a repardé $c^{\prime 3}, e^{\prime \prime}, e^{\prime 3}$, comme des quan-
 quantité du huitione ondre, etc.

En opérant conforménent aux explications qui précèdent, on a trouvé pour I la valeur suivante
$\mathrm{R}=\frac{2}{2 n}$

т. xx vill.
charitere - péneloppemext de R. 37

$+\left[-\frac{153}{13} m^{2}+\frac{153}{4} 7^{\prime} m^{n}+\frac{663}{64} r^{n}+\frac{34}{8} m^{n}\right] \cos \left(2 h+26+1-2 k^{n}-\xi^{\prime}-16\right)$

$\left.+\frac{5}{128} y^{2}+\frac{112}{32} y^{2} e^{6}\right] \quad \cos (2 g+1)$

$\left.-\frac{1}{28} y^{\prime 2}+\frac{13}{52} r \operatorname{coc}\right] \cos \left(2 h+t-3 k^{\prime}-2 g^{\prime}-2 r\right.$

3
Thiconie be mocirvist be is tuxe.
$-\frac{34}{5}$.
$-\frac{125}{3}+10014 h+68+31-2 h-46-161$
 $-\frac{105}{109}=160 \cdot 46+18-41-4 h-18-3+1$
$+\frac{105}{64}+\cdots 5,4 h+48 \cdot 6 t-4 h-45-4 t$

- $\frac{11}{5}+\cdots, 014 h \cdot 48+21-16 \cdot 4 z^{\prime}-81$

$-{ }^{1365}+\cos 4 h+4 z+11-\left(h-4 z^{\prime}-5 n\right)$

- $\frac{31}{16}$ y $\cos \cos k+4 k+4 t-2 k-2 k^{2}-2 n$

45. Au moyen du développement de R qui sient d'étre donné, on pourra déterminer les valeurs de I, G, II, I, g, h, en fonction du temps, en se servant des équations (9). Tes valeurs de ces vi quantités dev ront ensnite ètre substituées dans les expressions decoordomées de la Lune, ee qui donnera définitivement ces coor domeées en fonction du temps.

- Neptune was discovered by Leverrier (1811-1877) and Adams (1819-1892) using perturbation theory, due to anomalies observed in the motion of Uranus.
- What happens to the long-term stability of the planets?

7. Chaos

- Chaos: irregular motion showing an extreme sensitivity to the choice of the initial conditions.
- Poincaré: discovered chaos while studying the 3-body problem (later Lorenz in 1962 the "Butterfly Effect").
- Chaos does not mean that a system is unstable, but rather unpredictable.

- Earth-Moon-spacecraft= 3-body pb, no Kepler laws
- Poincaré: 3-body problem, homoclinic points, chaos
- Kolmogorov: KAM theory, regular orbits

8. Resonances

RESONANCE

Involving 3 objects (Sun, Jupiter, Saturn)

Relation between orbital periods

Involving 2 objects
(Earth. Moon)

Between orbital and Rotational periods

9. Orbital resonances

- 3 bodies: S (Sun), A (asteroid), J (Jupiter)
- Let T_{A} e T_{j} be the periods of revolution around S.
- Definition: An orbital resonance between A e J occurs when:

$$
T_{A} / T_{J}=p / q \quad \text { with } p, q \text { non-zero intergers. }
$$

- Examples:
- Jupiter and Saturn: $T_{J} / T_{S}=2 / 5$ or 2 Saturn's orbits correspond to 5 Jupiter's orbits;
- Io, Europa, Ganimede, Callisto: $\mathrm{T}_{10} / \mathrm{T}_{\text {EUR }}=1 / 2$, $\mathrm{T}_{\mathrm{IO}} / \mathrm{T}_{\mathrm{GAN}}=1 / 4, \mathrm{~T}_{\mathrm{EUR}} / \mathrm{T}_{\mathrm{GAN}}=1 / 2 ;$
- Satellites of Saturn: $\mathrm{T}_{\text {Titan }} / T_{\text {Hyperion }}=3 / 4, \mathrm{~T}_{\text {Titan }} / T_{\text {Japetus }}=1 / 5$;
- Greek and Trojan asteroids 1/1.

10. Greek and Trojan asteroids

- Two groups of asteroids in 1:1 resonance with Jupiter (same orbital period, same distance from the Sun).
- Euler collinear points L1, L2, L3; Lagrange triangular points L4, L5 (Greek and Trojans).

11. Full and empty resonances

Main belt asteroids between Mars and Jupiter: some resonances are full (1:1, 2:3), other regions called Kirkwood gaps are empty (1:2, 1:3, 1:4).

12. Interplanetary highways

- J.-L. Lagrange: Cette recherche n'est à la vérité que de pure curiosité
- C. Conley (1968): use the bottleneck between the primaries and chaos around the collinear points to travel at low cost (use Moser's version of Lyapunov theorem).
$C_{J}=3.03$
$C_{J}=3.038$
$C_{J}=3.0395$

Conley: "Unfortunately, orbits such as these require a long time to complete a cycle (e.g., 6 months, though a modification of the notion might improve that). On the other hand, one cannot predict how knowledge will be applied - only that it often is".

- International Sun/Earth

Explorer 3 (ISEE-3) 1978

- SOHO (1995)
- MAP (2001)
- GENESIS (2001)
- HERSCHEL-PLANCK (2009)

13. Spin-orbit resonances

- Earth and Moon with masses m_{E} e $m_{M} ; T_{\text {rev }}$ orbital period of M around E and $\mathrm{T}_{\text {rot }}$ rotational period of M (rigid body) around an internal spin axis.
- Definition: A spin-orbit resonance of order p/q, occurs if $T_{\text {rev }} / T_{\text {rot }}=p / q$ with p, q non-zero integers.
- Most famous example: 1/1 Earth-Moon spin-orbit resonance, where the Moon always points the same face to the Earth.
- Mercury-Sun: $3 / 2$ spin-orbit resonance, 2 revolutions of Mercury around the Sun correspond to 3 rotations about its spin-axis.
- Hyperion is in chaotic spin-orbit dynamics.

Resonance 1/1

14. Is the Solar system stable?

- Laskar: the internal Solar system is CHAOTIC.
- From an error of 15 mt on the initial position of the Earth: error 150 mt after 10 million years
- error 150 million km after 100 million years, no further predictions!

- RESULTS:

-Mercury and Mars very chaotic - Venus and Earth moderately chaotic

- External planets are regular
- Pluto very chaotic.

